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Abstract: Class diagrams show classes in software and the relationships between those classes. A class diagram is a 

unified modeling language diagram commonly used in education. Thus, an assessment of class diagrams is essential 

for teachers who usually have students produce class diagrams based on predetermined projects. Teachers assess 

student-produced class diagrams based on an answer key. However, teachers have a problem with a lack of consistency 

in assessment as teachers can use different standards between answers. This research attempts to approach class 

diagram assessment automatically. The proposed approach consists of two assessments: semantic and structural 

similarities. Semantic similarity is calculated using lexical information in the class diagram, and structural similarity 

is calculated using the diagram's structure, ignoring its lexical information. Our results show that experts see semantic 

and structural similarities equally during assessment. The proposed approach shows substantial agreement with experts 

in class diagram similarity assessment. Therefore, the proposed approach can automatically assess class diagram 

similarity as reliably as experts can. 
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1. Introduction 

Class diagrams are a part of a unified modeling 

language (UML) that displays a software's static 

structure by showing the classes within a piece of 

software and the logical relationships between those 

classes. Measurement of similarities between UML 

diagrams has been widely studied [1,2]; however, 

there are several issues with measuring class diagram 

similarity, such as reuse [3,4], clone detection [5-7], 

and assessment [8]. Class diagram reuse is useful 

because software engineers do not need to make 

diagrams from scratch, clone detection is useful when 

checking for plagiarism within diagrams, and 

assessment is useful for assisting teachers in 

assessing student diagram design assignments. 

Several previous studies have measured 

similarities between two class diagrams. Park and 

Bae [9] began by comparing the lexical information 

within class diagrams, dividing lexical information 

into class names, relationship names, and related 

class information. However, lexical similarity is only 

calculated syntactically. The studies [10,11] 

continued by dividing similarities into between-

structure similarities in class names and structures. 

Class name similarity compares the names within 

each class using WordNet to find differences in 

semantic meaning. The structural similarity between 

classes compares each type of relationship, such as 

associations, generalizations, and dependencies. 

Robles [12] built an ontology domain to look for 

similar class diagrams. He searched for each word in 

the class diagram in that ontology domain. However, 

the comparison of words is only syntactic, and reuse 

is less expected in more complex class diagrams. Qiu 

[13] divided class diagram similarities into two 

categories: structural similarities and property 

similarities. Structural similarities are seen in lexical 

relationships between classes. Property similarities 

are seen in the lexical attributes and operations of 
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each class. This study showed that combining class 

structures and class properties is a good approach for 

calculating similarity. Al-Khiaty and Ahmed [14-17] 

measured similarities of class properties and class 

diagram structures. He combined class names and 

information within the class (e.g., attribute and 

operation names) as class properties. The lexical 

evaluation of relations in the class diagram is used to 

calculate class diagram structure. Adamu [18,19] 

built on previous studies by combining several UML 

diagrams. He proposed a framework for measuring 

similarity using the diagram's meta model [4]. He 

then combined the similarity of several UML 

diagrams using different similarity parameters [18]. 

Lexical information is used as a measurement 

parameter in class diagrams [18,20]. Yuan [21] 

measured structural similarity by ignoring lexical 

information to convert a class diagram into a graph. 

He noted that graphs could effectively measure 

structural similarities between class diagrams. Huang 

[22] also converted a class diagram into a graph. 

Therefore, a graph can be used to represent a class 

diagram. 

UML diagrams can be modeled in certain forms. 

Based on previous studies, we can conclude that a 

UML diagram has two primary types of information: 

lexical information and structural information. 

Lexical information consists of all the words in the 

diagram, such as class names, property names, 

attribute names, and relation types. In contrast, 

structural information is the UML diagram's structure 

or form without any lexical information. 

In this study, we focused on assessing the 

similarity of UML class diagrams, which are 

commonly used as teaching materials. Teachers give 

assignments to students to build class diagrams based 

on a project determined by the teacher. Similarity 

assessment is used to assist teachers in assessing the 

class diagrams that students build. However, teachers 

can have difficulty assessing class diagrams from 

students because class diagrams consist of many 

classes that have many relationships between them 

[23], [24]. Many components in a class diagram can 

affect the consistency of teacher assessments. In 

addition, teacher fatigue can also affect assessment 

consistency. Automatic assessment is a solution to 

maintain teacher consistency [25]. Jebli [26] 

attempted to assess class diagrams by obtaining 

lexical information from class diagrams using 

machine learning and ignoring diagram structure. 

However, structure is an important parameter for 

assessing UML diagram similarity [27]. 

In this study, we developed an approach for 

automatically assessing the class diagram similarities 

as reliably as an expert can (i.e., a teacher who 

conducts assessments). This study is a continuation 

of previous studies [28] that only assessed semantic 

similarity. The proposed approach divides similarity 

into semantic and structural similarities. We 

combined these two similarities to assess like an 

expert. We divided similarity into two because the 

information obtained from class diagrams consists of 

lexical and structural information. Our approach can 

show the inclination of a teacher's perspective in 

assessing whether to look at lexical information or 

class diagram structure. The tendency of perspective 

in assessment is obtained from the similarity weight, 

which has the best agreement value with the expert. 

The proposed semantic similarity method compares 

each component's lexical information using simple 

natural language processing (NLP) and compares 

within-class and between-class structures using graph 

edit distance (GED). The assessment of the proposed 

method agreement with the expert is a substantial 

agreement. Therefore, our approach assesses 

students' answers based on the answer key as reliable 

as an expert. 

The rest of this article consists of several sections: 

Section 2 presents the semantic similarity assessment. 

Section 3 presents the structural similarity 

assessment. Section 4 presents the combination of 

previous assessment into class diagram similarity 

assessment. Section 5 presents the result and 

evaluation. Section 6 presents our discussion about 

the evaluation and findings. Section 7 presents the 

conclusion of our study. 

2. Semantic similarity assessment 

The concept of semantic similarity assessment 

involves seeing the similarity of two class diagrams 

based on lexical information obtained from those 

class diagrams. Information in class diagrams can be 

divided into property information and relationship 

information. This study discusses the lexical aspects 

of each item of information. For example, for class 

diagrams d1 and d2, all property information from d1 

will be searched to find similarities to property 

information from d2. Operating information has 

many items, and each item from d1 will be compared 

with each item from d2. After obtaining the semantic 

similarity from each item, a greedy algorithm is 

needed to locate the ideal value of the previously 

calculated set of similarity values. 

2.1 Semantic similarity 

We determined semantic similarity using NLP 

[29]. We used a common NLP approach because 

words will be compared in one phrase consisting of 

two words on average. As previously explained, 
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Figure. 1 Natural language processing in UML diagram semantic similarity assessment 

 

 
Figure. 2 Class diagram elements 

 

semantic calculations are performed in the smallest 

part of each class diagram component. For example, 

the class name is one of the lowest parts of a class 

diagram, and class names have different characters 

from ordinary lexical information. Classes can have 

more than one word for a name, but the next word 

must be in uppercase. Therefore, NLP for semantic 

similarity has specific process details. 

Fig. 1 shows the calculation procedure. The first 

part of this procedure is the tokenization process. 

Next, each word is given a part of speech (POS) sign. 

The following procedure is to eliminate stop words 

and lemmatization. The final part of the procedure is 

to calculate the similarity of words using cosine 

similarity. 

The tokenization process involves breaking a 

group of words into individual units and is performed 

to adjust to the input words to be calculated. From the 

previous explanation, the lexical form of the class 

name, for example, getData, cannot be directly 

processed. Therefore, a unique method is needed for 

this tokenization process. First, if the next letter 

consists of an uppercase letter, the word will be 

broken up. Second, if uppercase letters are found in a 

sequence, the word will not be broken up until 

uppercase letters accompanied by lowercase letters 

are found. 

POS tagging is intended to make the token's type 

known. Token types include nouns, verbs, adjectives, 

and so on. This process is assisted by Stanford NLP 

[30] using Stanford POS tagger with an English 

language model. Tagging uses POS from the Penn 

Treebank model to obtain each word's label. Before 

conducting the POS tagging process, all tokens are 

converted into lowercase letters. 

The main objective in implementing the stop 

word elimination process is reducing the number of 

words in a report, which affects NLP speed and 

performance. In NLP, stop words are words that are 

ignored in processing, which are usually stored in 

stop lists. Eliminating stop words in this study is 

aimed at increasing the similarity between two series 

of words based on their true meanings. 

The following process is known as lemmatization, 

which is the process of turning tokens into essential 

words. Lemmatization aims to increase accuracy in 

the next process and was assisted by Stanford NLP. 

Calculation using cosine similarity [29,31] is the last 

process of calculating between-word similarity. 

Cosine similarity, as implemented in this study, 

consists of three stages: vector making, calculation of 

word similarity, and calculation of the cosine values. 

Each word will be counted as a similarity to other 

words to obtain words with different meanings. If 

several similar words are found, only the first word 

will be included in the vector. Determining words 

with different meanings requires that the similarity 

value of the word does not exceed a certain threshold. 

The similarity of words is calculated using the Wu 

and Palmer Semantic Similarity Measure [32], which 

uses WordNet [33] to calculate the depth.  

2.2 Class diagram semantic similarity 

Before measuring the similarity between two 

class diagrams, we first divided class diagram 

elements into property information and relationship 

information [28]. Fig. 2 shows class diagram 

elements. Property information consists of class 

names, attributes, and operations, and relationship 

information includes association, dependency, and 

generalization.  

Furthermore, Fig. 2 shows that the class diagram 

semantic similarity (classSem) consists of the 

similarity of class diagram properties (propSim) and 

relationships (relSim). Fig. 3 shows the flow of 

semantic similarity calculations. Both class diagrams 

will be processed in XML metadata interchange 

format using a tool. Each diagram is extracted based 

on class diagram components, and each extraction  
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Figure. 3 Flowchart of semantic similarity assessment 

 

result is counted as a semantic similarity. 

Components are calculated from the smallest to 

largest. The classSem between class diagrams d1 and 

d2 can be expressed as Equation 1. 

 

𝑐𝑙𝑎𝑠𝑠𝑆𝑒𝑚(𝑑1, 𝑑2) = (1 − 𝜌𝑠𝑒𝑚) ×
𝑝𝑟𝑜𝑝𝑆𝑖𝑚(𝑑1, 𝑑2) + 𝜌𝑠𝑒𝑚 × 𝑟𝑒𝑙𝑆𝑖𝑚(𝑑1, 𝑑2)(1) 

 

Eq. (1) shows how to assess similarities between 

class diagrams d1 and d2. Properties and relationships 

have a different level of interest using ρsem, the value 

of which ranges from 0 to 1. Then, properties in class 

diagram d1 consist of several classes. Each class in 

class diagram d1 will be compared with the classes in 

class diagram d2. The propSim between the two class 

diagrams is expressed as Eq. (2). 

Class collection C1 in class diagram d1 will be 

compared with class collection C2 in class diagram 

d2. The ith-class (ci) in class diagram d1 is then 

compared with the jth-class (cj) in class diagram d2. 

The similarity between the two classes is called cSim. 

We used changePivot to change each value in the row 

and column with a maximum value to 0. Algorithm 1 

explains changePivot. 
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𝑝𝑟𝑜𝑝𝑆𝑖𝑚(𝑑1, 𝑑2) =
2×(∑ 𝑐ℎ𝑎𝑛𝑔𝑒𝑃𝑖𝑣𝑜𝑡(𝑀𝑎𝑥(∑ ∑ 𝑐𝑆𝑖𝑚(𝑐𝑖,𝑐𝑗)

|𝐶2|
𝑗=1

|𝐶1|
𝑖=1 ))

𝑀𝑖𝑛(|𝐶1|,|𝐶2|)
𝑘=1 )

|𝐶1|+|𝐶2|
.                (2) 

 

𝑎𝑆𝑖𝑚(𝑐1, 𝑐2) =
2×(∑ 𝑐ℎ𝑎𝑛𝑔𝑒𝑃𝑖𝑣𝑜𝑡(𝑀𝑎𝑥(∑ ∑ 𝑑𝑎𝑆𝑖𝑚(𝑎𝑖,𝑎𝑗)

|𝐴2|
𝑗=1

|𝐴1|
𝑖=1 ))

𝑀𝑖𝑛(|𝐴1|,|𝐴2|)
𝑘=1 )

|𝐴1|+|𝐴2|
.                   (4) 

 

𝑜𝑝𝑆𝑖𝑚(𝑐1, 𝑐2) =
2×(∑ 𝑐ℎ𝑎𝑛𝑔𝑒𝑃𝑖𝑣𝑜𝑡(𝑀𝑎𝑥(∑ ∑ 𝑑𝑜𝑝𝑆𝑖𝑚(𝑜𝑝𝑖,𝑜𝑝𝑗)

|𝑂𝑃2|
𝑗=1

|𝑂𝑃1|
𝑖=1 ))

𝑀𝑖𝑛(|𝑂𝑃1|,|𝑂𝑃2|)
𝑘=1 )

|𝑂𝑃1|+|𝑂𝑃2|
.        (6) 

 

Algorithm 1: changePivot 

Input: two-dimension matrix and 

pivot/coordinate maximum value (x,y) 

1. Select pivot 

2. M(x, :) = 0 

3. M(:, y) = 0 

Output: changed matrix 

 

Line 1 in Algorithm 1 takes the pivot or 

coordinates with the maximum value in the similarity 

matrix. Line 2 changes all the values in the row pivot 

(x) to 0. Line 3 changes all the values in the column 

pivot (y) to 0. The cSim between classes c1 and c2 

can be expressed as Eq. (3) 

 

𝑐𝑆𝑖𝑚(𝑐1, 𝑐2) = 𝑤𝑐𝑛 × 𝑐𝑛𝑆𝑖𝑚(𝑐1, 𝑐2) + 𝑤𝑎 ×
𝑎𝑆𝑖𝑚(𝑐1, 𝑐2) + 𝑤𝑜𝑝 × 𝑜𝑝𝑆𝑖𝑚(𝑐1, 𝑐2).       (3) 

 

The similarity between the two classes is 

influenced by class name similarity (cnSim), attribute 

similarity (aSim), and operation similarity (opSim). 

Weight wcn is the weight of cnSim between classes c1 

and c2. Weight wap is the weight of aSim between 

classes c1 and c2. Weight wo is the weight of opSim 

between classes c1 and c2. The total of these weights 

is 1. The weight composition was adopted from Al-

Khiaty [14], which showed that wa and wop were only 

slightly greater than wcn. Therefore, we used weight 

compositions wcn = 0.4, wa = 0.3, and wop = 0.3. The 

cnSim value measures the lexical similarity of class 

names of two classes with semantic similarity 

described in Section 2.1. Eq. (4) shows aSim between 

classes c1 and c2. 

We then compared attribute collection A1 from 

class c1 with attribute collection A2 from class c1. We 

then used changePivot to change the values of rows 

and columns in the similarity matrix following 

Algorithm 1. Attributes then consist of a modifier, an 

attribute name, and a data type. We must perform a 

detailed attribute similarity calculation (daSim), 

which contains these three items. The daSim between 

attributes a1 and a2 can be expressed as Eq. (5). 

 

𝑑𝑎𝑆𝑖𝑚(𝑎1, 𝑎2) = 𝑤𝑚𝑑 × 𝑠𝑖𝑚(𝑚𝑑1, 𝑚𝑑2) +
𝑤𝑛𝑎 × 𝐶𝑜𝑠𝑖𝑛𝑒𝑆𝑖𝑚(𝑛𝑎1, 𝑛𝑎2) + 𝑤𝑡𝑦 ×

𝑠𝑖𝑚(𝑡𝑦1, 𝑡𝑦2).(5) 

 

Weight wmd is the weight of similarity between 

modifiers md1 and md2. Weight wna is the weight of 

attribute name similarity between attribute names na1 

and na2. Weight wty is the weight of data type 

similarity between data types ty1 and ty2. The total of 

wmd, wna, and wty is 1, and the weights used are wmd = 

0.1, wna = 0.7, and wty = 0.2. We emphasized name 

attributes because experts see them more clearly. 

Calculations of similarities between two modifiers 

and between two data types are simple. If the 

modifiers of the data types are the same, the similarity 

value is 1. If the modifiers or data types are different, 

the similarity value is 0. The similarity between 

attribute names can be calculated from the lexical 

information of each attribute using semantic 

similarity, as shown in Section 2.1. 

The opSim between all operations in c1 and all 

operations in c2 is expressed as Eq. (6). Operation 

collection OP1 in class c1 is compared with operation 

collection OP2 in class c2. We then calculated the 

similarity of each i-th operation (opi) of class c1 with 

that of the j-operation (opj) of class c2. We then used 

changePivot to change the values of rows and 

columns in the similarity matrix following Algorithm 

1. Operations consist of a modifier, an operation 

name, a data type, and a parameter. Therefore, we 

needed a detailed operation similarity (dopSim) 

between operations op1 and op2, which contains these 

four things. dopSim between operations op1 and op2 

can be expressed as Eq. (7). 

 

𝑑𝑜𝑝𝑆𝑖𝑚(𝑜𝑝1, 𝑜𝑝2) = 𝑤𝑚𝑑𝑂 ×
𝑠𝑖𝑚(𝑚𝑑𝑂1, 𝑚𝑑𝑂2) + 𝑤𝑛𝑎𝑂 ×

𝐶𝑜𝑠𝑖𝑛𝑒𝑆𝑖𝑚(𝑛𝑎𝑂1, 𝑛𝑎𝑂2) + 𝑤𝑡𝑦𝑂 ×

𝑠𝑖𝑚(𝑡𝑦𝑂1, 𝑡𝑦𝑂2) + 𝑤𝑝𝑎𝑟𝑂 × 𝑝𝑟𝑆𝑖𝑚(𝑜𝑝1, 𝑜𝑝2).  

(7) 

 

Weight wmdO is the weight of operation modifier 

similarity between operation modifiers mdO1 and 

mdO2. Weight wnaO is the weight of operation name 

similarity between operation names naO1 and naO2.  
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𝑝𝑟𝑆𝑖𝑚(𝑜𝑝1, 𝑜𝑝2) =
2×(∑ 𝑐ℎ𝑎𝑛𝑔𝑒𝑃𝑖𝑣𝑜𝑡(𝑀𝑎𝑥(∑ ∑ 𝐶𝑜𝑠𝑆𝑖𝑚(𝑝𝑟𝑖,𝑝𝑟𝑗)

|𝑃𝑅2|
𝑗=1

|𝑃𝑅1|
𝑖=1 ))

𝑀𝑖𝑛(|𝑃𝑅1|,|𝑃𝑅2|)
𝑘=1 )

|𝑃𝑅1|+|𝑃𝑅2|
.       (8) 

 

𝑟𝑎𝑆𝑖𝑚(𝑑1, 𝑑2) =
2×(∑ 𝑐ℎ𝑎𝑛𝑔𝑒𝑃𝑖𝑣𝑜𝑡(𝑀𝑎𝑥(∑ ∑ 𝑑𝑟𝑎𝑆𝑖𝑚(𝑟𝑎𝑖,𝑟𝑎𝑗)

|𝑅𝐴2|
𝑗=1

|𝑅𝐴1|
𝑖=1 ))

𝑀𝑖𝑛(|𝑅𝐴1|,|𝑅𝐴2|)
𝑘=1 )

|𝑅𝐴1|+|𝑅𝐴2|
.    (10) 

 

Weight wtyO is the weight of operation data type 

similarity between operation data types tyo1 and tyO2. 

Weight wparO is the weight of parameter similarity 

between operations op1 and op2. We used arbitrary 

weights of wmdO = 0.1, wnaO = 0.7, wtyO = 0.1, and wparO 

= 0.1, and emphasized the name of the operation. 

Calculation of similarity between modifiers and data 

types in operations is the same as that between 

modifiers and data types in attributes. The similarity 

between operation names can be calculated from the 

lexical information of each operation using semantic 

similarity, as shown in Section 2.1. We cannot 

directly calculate the similarity of parameters (prSim) 

because an operation can have more than one 

parameter. prSim is expressed as Eq. (8). 

Parameter collection PR1 from operation op1 is 

compared with parameter collection PR2 from 

operation op2. The ith-parameter (pri) of the first 

operation is calculated by the jth-parameter (prj) of 

the second operation. We then used changePivot to 

change the values of rows and columns in the 

similarity matrix following Algorithm 1. Similarity 

between pri and prj is calculated using semantic 

similarity, as shown in Section 2.1. The relSim 

between class diagrams d1 and d2 can be expressed as 

Eq. (9). 

 

𝑟𝑒𝑙𝑆𝑖𝑚(𝑑1, 𝑑2) = 𝑤𝑟𝑎 × 𝑟𝑎𝑆𝑖𝑚(𝑑1, 𝑑2) +
𝑤𝑟𝑑 × 𝑟𝑑𝑆𝑖𝑚(𝑑1, 𝑑2) + 𝑤𝑟𝑔 × 𝑟𝑔𝑆𝑖𝑚(𝑑1, 𝑑2). 

(9) 

 

Here, wra is the weight of association relationship 

similarity (raSim) between class diagrams d1 and d2, 

wrd is the weight of dependency relationship 

similarity (rdSim) between class diagrams d1 and d2, 

and wrg is the weight of generalization relationship 

similarity (rgSim) between class diagrams d1 and d2. 

Relationships are separated because it is unfair to 

equally compare relationships when the relationships 

being compared are different. The weight 

determination is adopted from previous studies [34] 

by looking at the availability of elements to be 

calculated. If neither diagram has generalizations, the 

weight for generalizations is 0. The weight value to 

be calculated is the result of sharing the group of 

relationships sought by the sum relationship of the 

two diagrams. For example, d1 has three associations 

and one dependency, and d2 has two associations. 

Thus, the weight of the association is 5/6, the weight 

of dependency is 1/6, and the weight of 

generalization is 0. The raSim value between class 

diagrams d1 and d2 can be expressed as Eq. (10). 

The association relationship collection RA1 from 

class diagram d1 is compared with the association 

relationship collection RA2 from class diagram d2. 

The ith-association (rai) from class diagram d1 is 

calculated along with the jth-association (raj) from 

class diagram d2, and changePivot is used to change 

the row and column values in the similarity matrix 

following Algorithm 1. Furthermore, an association 

relationship consists of the source class, relation 

name, aggregation/composition, and target class. 

Therefore, we need a detailed association relationship 

similarity (draSim) between association relationships 

ra1 and ra2, which can be expressed as Eq. (11). 

 

𝑑𝑟𝑎𝑆𝑖𝑚(𝑟𝑎1, 𝑟𝑎2) = 𝑤𝑟𝑎1 × 𝐶𝑜𝑠𝑆𝑖𝑚(𝑠𝑟𝑐1, 𝑠𝑟𝑐2) 
+𝑤𝑟𝑎2 × 𝐶𝑜𝑠𝑆𝑖𝑚(𝑛𝑚1, 𝑛𝑚2) 
+𝑤𝑟𝑎3 × 𝑠𝑖𝑚(𝑜𝑤1, 𝑜𝑤2) 

+𝑤𝑟𝑎4 × 𝐶𝑜𝑠𝑆𝑖𝑚(𝑡𝑔𝑡1, 𝑡𝑔𝑡2).           (11) 

 

draSim consists of source class src, relationship 

name nm, relation ownership ow, and target class tgt. 

Here, wra1 is the weight of source class similarity 

between source classes src1 and src2, wra2 is the 

weight of relationship name similarity between 

relationship names nm1 and nm2, wra3 is the weight of 

ownership similarity between ownerships ow1 and 

ow2, and wra4 is the weight of target class similarity 

between target classes tgt1 and tgt2. The total weight 

is 1, and the weights used are wra1 = 0.3, wra2 = 0.2, 

wra3 = 0.2, and wra4 = 0.3. The weight of the class 

name (source class and target class) is determined to 

be greater than that of the ownership and relationship 

name because they are always available in class 

diagrams. In contrast, relationship names are rarely 

written on class diagrams and ownership consists 

only of composition or aggregation. Class name and 

relationship name similarities use semantic similarity, 

as shown in Section 2.1. The value of ownership 

similarity is 0 if they are different and 1 if they are 

not different. The rdSim between class diagrams d1 

and d2 can be expressed as Eq. (12).  

Here, dependency relationship collection RD1 

from class diagram d1 is compared with dependency 

relationship collection RD2 from class diagram d2.  
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𝑟𝑑𝑆𝑖𝑚(𝑑1, 𝑑2) =
2×(∑ 𝑐ℎ𝑎𝑛𝑔𝑒𝑃𝑖𝑣𝑜𝑡(𝑀𝑎𝑥(∑ ∑ 𝑑𝑟𝑑𝑆𝑖𝑚(𝑟𝑑𝑖,𝑟𝑑𝑗)

|𝑅𝐷2|
𝑗=1

|𝑅𝐷1|
𝑖=1 ))

𝑀𝑖𝑛(|𝑅𝐷1|,|𝑅𝐷2|)
𝑘=1 )

|𝑅𝐷1|+|𝑅𝐷2|
.         (12) 

 

𝑑𝑟𝑑𝑆𝑖𝑚(𝑟𝑑1, 𝑟𝑑2) =
𝐶𝑜𝑠𝑆𝑖𝑚(𝑠𝑟𝑐1,𝑠𝑟𝑐2)+𝐶𝑜𝑠𝑆𝑖𝑚(𝑡𝑔𝑡1,𝑡𝑔𝑡2)

2
.                      (13) 

 

𝑟𝑔𝑆𝑖𝑚(𝑑1, 𝑑2) =
2×(∑ 𝑐ℎ𝑎𝑛𝑔𝑒𝑃𝑖𝑣𝑜𝑡(𝑀𝑎𝑥(∑ ∑ 𝑑𝑟𝑔𝑆𝑖𝑚(𝑟𝑔𝑖,𝑟𝑔𝑗)

|𝑅𝐺2|
𝑗=1

|𝑅𝐺1|
𝑖=1 ))

𝑀𝑖𝑛(|𝑅𝐺1|,|𝑅𝐺2|)
𝑘=1 )

|𝑅𝐺1|+|𝑅𝐺2|
.        (14) 

 

𝑑𝑟𝑔𝑆𝑖𝑚(𝑟𝑔1, 𝑟𝑔2) =
𝐶𝑜𝑠𝑆𝑖𝑚(𝑠𝑟𝑐1,𝑠𝑟𝑐2)+𝐶𝑜𝑠𝑆𝑖𝑚(𝑡𝑔𝑡1,𝑡𝑔𝑡2)

2
.                      (15) 

 

The ith-dependency relationship (rdi) from class 

diagram d1 is calculated along with the jth-

dependency relationship (rdj) from class diagram d2, 

and changePivot is used to change the row and 

column values in the similarity matrix following 

Algorithm 1. The dependency relationship consists of 

the source and target classes. Therefore, we need an 

advanced dependency relationship similarity 

(drdSim) between dependency relationships rd1 and 

rd2, which can be expressed as Eq. (13). 

Class name (source class and target class) 

similarity uses semantic similarity as shown in 

Section 2.1. The generalization relationship 

similarity (rgSim) between class diagrams d1 and d2 

can be expressed as Eq. (14). 

Generalization relationship collection RG1 from 

class diagram d1 is compared with generalization 

relationship collection RG2 from class diagram d2. 

The ith-generalization relationship (rgi) from class 

diagram d1 is calculated along with the jth-

generalization relationship (rgj) from class diagram 

d2, and changePivot is used to change the row and 

column values in the similarity matrix following 

Algorithm 1. Furthermore, the generalization consists 

of the source and target classes. Therefore, we need 

an advanced generalization relationship similarity 

(drgSim) between generalization relationships rg1 

and rg2, which can be expressed as Eq. (15). 

The class name similarity includes the source (src) 

and target class names (tgt), and class name similarity 

is calculated along with semantic similarity, as shown 

in Section 2.1. 

3. Structural similarity assessment 

Structural similarity in class diagrams can be 

represented by making a UML common graph (UCG) 

model of each diagram. Thus, the pair of diagrams for 

which similarity will be calculated is converted to 

UCG, and the resulting UCG pair is searched for 

similarity values. 

 

3.1 Class diagram structural similarity 

UCG models were originally intended to build 

graphs that can accommodate several UML diagrams 

with the same characters. In this study, we proposed 

a graph that can provide both class and sequence 

diagrams. The concept is that the UCG model can 

calculate structural similarity between two class 

diagrams and between sequence diagrams, as well as 

the similarity of class and sequence diagrams. UCG 

models are currently used to calculate the structural 

similarity between two class diagrams. As with 

graphs in general, UCG consists of two elements, 

namely, vertices and edges. The UCG used in this 

study is thus an improvement on conventional UCG 

[21]. 

A UCG can only be used to create models for 

class diagrams. In this study, we built a model that 

can include several UML diagrams. Table 1 shows 

the designation of the UCG model, which provides 

for class and sequence diagrams. To this, we added 

object vertex, class edge, reply message edge, 

synchronous message edge, and asynchronous 

message edge components. We propose calculations 

on sequence diagrams similar to class diagram 

 
Table 1. UML common graph description 

No Type Name Tag 

1 Vertex Class Vertex vc 

2 Vertex Attribute Vertex va 

3 Vertex Operation Vertex vo 

4 Vertex Parameter Vertex vp 

5 Vertex Object Vertex vob 

6 Edge Attribute Edge ea 

7 Edge Operation Edge eo 

8 Edge Parameter Edge ep 

9 Edge Association Edge e1 

10 Edge Generalization Edge e2 

11 Edge Aggregation Edge e3 

12 Edge Composition Edge e4 

13 Edge Dependency Edge e5 

14 Edge Realization Edge e6 

15 Edge Class Edge ec 

16 Edge Reply Message Edge e7 

17 Edge Synchronous Message Edge e8 

18 Edge Asynchronous Message Edge e9 
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Figure. 4 Transformation of a class diagram into a UML 

common graph 

 

calculations. These calculations are based on 

interactions between classes in the class diagram that 

also occur in the sequence diagram (intraSim). The 

difference is the information in the class (interSim). 

Following Table 1, we can transform a class 

diagram to a UCG. Fig. 4 illustrates this process. The 

graph shows that a class can have zero or more 

attributes, zero or more operations, and zero or more 

related classes. Thus, an operation can also have zero 

or more parameters. 

3.2 UCG similarity assessment 

We obtained the structural similarity assessment 

of the class diagram from the UCG similarity 

assessment. Fig. 5 shows an assessment of structural  

similarity. Diagrams are divided based on structure 

and then calculated from the smallest graph. The 

results of these calculations are then entered into the 

next calculation. 

All proposed structural calculations disregard the 

lexical information of the class diagram because 

structural similarity is different from semantic 

similarity, as explained previously. Structural 

similarity only considers the types of components in 

the class diagram. The UCG of class diagrams 

contains two types of information: intraStructure and 

interStructure [21]. IntraStructure (intraSim) 

contains the number of attributes and operations of  

 
Figure. 5 Flowchart of structural similarity assessment 

 

each class, and interStructure (interSim) includes the 

relationship information between the two classes. 

Consequently, the structural similarity between two 

UCGs must consider both classes of information, the 

importance of which is distinguished by ρstruc, which 

ranges from 0 to 1. Eq. (16) shows the structural 

assessment between class diagrams d1 and d2. 

 

𝑐𝑙𝑎𝑠𝑠𝑆𝑡𝑟𝑢𝑐(𝑑1, 𝑑2) = (1 − 𝜌𝑠𝑡𝑟𝑢𝑐) ×
𝑖𝑛𝑡𝑟𝑎𝑆𝑖𝑚(𝑔1, 𝑔2) + 𝜌𝑠𝑡𝑟𝑢𝑐 × 𝑖𝑛𝑡𝑒𝑟𝑆𝑖𝑚(𝑔1, 𝑔2).  

(16) 

 

Graphs g1 and g2 are the initial and the 

comparative UCGs, respectively. Unlike previous 

studies, we calculated intraSim by combining GED 

[35] using greedy algorithms. Eq. (17) shows how to 

calculate intraSim. The information in each class 

contains numbers of attributes, operations, and 

parameters. Thus, a graph is split into several 

subgraphs based on classes. Here, vci is a subgraph of 

g1 and g2. Thus, each class of g1 is calculated using 

the GED for all classes of g2 as Eq. (17). 

Here, VC1 is a collection of subgraphs in g1, and 

VC2 is a collection of subgraphs in g2. The 

changePivot function is to change the all points row 

and column values to 0 following Algorithm 1. After 

determining the similarity of the two subgraphs 

between g1 and g2 using GED (GED (vci, vcj)), the 

greedy algorithm finds the optimal similarity value 

between the two. This value is then assigned to be the 

value of intraSim. GED calculates the minimum cost 

to convert g1 to g2, and the minimum costs are 

calculated as Eq. (18). 
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Figure. 6 Subgraph matching using graph edit distance in intraSim 

 

𝑖𝑛𝑡𝑟𝑎𝑆𝑖𝑚(𝑔1, 𝑔2) =
2×(∑ 𝑐ℎ𝑎𝑛𝑔𝑒𝑃𝑖𝑣𝑜𝑡(𝑀𝑎𝑥(∑ ∑ 𝐺𝐸𝐷(𝑣𝑐𝑖,𝑣𝑐𝑗)

|𝑉𝐶2|
𝑗=1

|𝑉𝐶1|
𝑖=1 ))

𝑀𝑖𝑛(|𝑉𝐶1|,|𝑉𝐶2|)
𝑘=1 )

|𝑉𝐶1|+|𝑉𝐶2|
.                     (17) 

 

𝑑𝜆𝑚𝑖𝑛
(𝑔1, 𝑔2) =

𝑚𝑖𝑛
𝜆 ∈ 𝛾(𝑔1, 𝑔2)

∑ 𝑐(𝑒𝑖)𝑒𝑖∈𝜆 .   

(18) 

 

Here, 𝑑𝜆𝑚𝑖𝑛
 is the lowest cost graph path. GED 

searches for all possible permutations of the path and 

calculates the cost of changing g1 to g2. The GED we 

used has three operations: substitution, addition, and 

deletion. Substitution is accomplished by changing 

the edges, addition is done by adding edges and 

vertices according to the destination graph, and 

deletion is performed by removing edges and vertices 

according to the destination graph. Here, λmin 

produces the smallest change cost amount, so it must 

be normalized into a 0–1 scale. Fig. 6 illustrates how 

g1 subgraphs are changed into g2 subgraphs to 

calculate intraSim. Fig. 6 shows that the minimum 

cost for converting the first subgraph into the second 

subgraph is 3. Therefore, the normalized value of 

similarity for the two subgraphs is 1 − (3/11). 11 is 

obtained by taking the maximum of the sum of 

vertices and edges in g1 and g2. 

Unlike previous studies, we used GED [36] to 

measure interSim, which only takes the relationship 

information between classes from UCGs, meaning 

that the shape of the graph to be calculated differs 

from intraSim. Fig. 7 shows an example of the form 

of interSim used to measure the similarity of two 

class diagrams, CD1 and CD2. CD1 has three classes 

and two relations, and CD2 has three classes and three 

relations. 

Prior research used a maximum common 

subgraph that was more suitable for reuse. In this 

study, we used GED because it matches the similarity 

assessment that must not see a portion of the graph 

content. Eq. (19) measures interSim with the concept 

of GED. 

 

 

Figure. 7 Graph used to measure interSim 
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Figure. 8 Graph matching using graph edit distance in interSim 

 

Table 2. Variable description 
Variable Description  Variable Description  Variable Description 

classSem Semantic assessment  OP2 Operation collection of c2  nm Name of the relationship 

d1 Firts class diagram  opi The i-operation of OP1  ow aggregation/composition 

d2 Second class diagram  opj The j-operation of OP2  tgt Target class name 

ρsem Distinguishing semantic 

component importance 

 dopSi

m 

Detailed operation 

similarity 

 wra1 Weight of source class name 

propSim Property similarity  mdO1 Modifier of op1  wra2 Weight of relationship name 

relSim Relationship similarity  mdO2 Modifier of op2  wra3 Weight of relationship own 

C1 Class collection of d1  naO1 Name of operation op1  wra4 Weight of target class name 

C2 Class collection of d2  naO2 Name of operation op2  RD1 Dependency collection of d1 

ci The i-class from C1  tyO1 Data type of op1  RD2 Dependency collection of d2 

cj The j-class from C2  tyO2 Data type of op2  rdi The i-relationship of RD1 

cSim Class similarity  prSim Parameter similarity  rdj The j-relationship of RD2 

cnSim Class Name Similarity  wmdO Weight of operation 

modifier similarity 

 drdSim Detailed dependency 

similarity 

aSim Attribute Similarity  wnaO Weight of operation 

name similarity 

 RG1 Generalization collection of 

d1 

opSim Operation Similarity  wtyO Weight of operation data 

type similarity 

 RG2 Generalization collection of 

d2 

wcn Weight of class name 

similarity 

 wparO Weight of parameter 

similarity 

 rgi The i-relationship of RG1 

wa Weight of attribute 

similarity 

 PR1 Parameter collection of 

operation op1 

 rgj The j-relationship of RG2 

wop Weight of operation 

similarity 

 PR2 Parameter collection of 

operation op2 

 drgSim Detailed generalization 

similarity 

A1 Attribute collection of c1  pri The i-parameter of op1  classStruc Structural assessment 

A2 Attribute collection of c2  prj The j-parameter of op2  ρstruc Distinguishing structural 

component importance 

ai The i-attribute from A1  relSim Relationship similarity  intraSim Similarity of intraStructure 

aj The j-attribute from A2  raSim Association similarity  interSim Similarity of interStructure 

daSim Detailed attribute 

similarity 

 rdSim Dependency similarity  g1 Translated graph of d1 

md1 Modifier of attribute a1  rgSim Generalization similarity  g2 Translated graph of d2 

md2 Modifier of attribute a2  wra Weight of association 

similarity 

 VC1 Collection of subgraphs in g1 

na1 Name of attribute a1  wrd Weight of dependency 

similarity 

 VC2 Collection of subgraphs in g1 

na2 Name of attribute a2  wrg Weight of generalization 

similarity 

 vci The i-graph from VC1 

ty1 Data type of attribute a1  RA1 Association collection 

from d1 

 vcj The j-graph from VC2 

ty2 Data type of attribute a2  RA2 Association collection 

from d2 

 𝑑𝜆𝑚𝑖𝑛
 The lowest cost graph path 

wmd Weight of modifier  rai The i-relationship of RA1  c(ei) The cost of transforming g1 

into g2 

wna Weight of attribute name  raj The j-relationship of RA2  classSim Class diagram similarity 

assessment 

wty Weight of data type  draSim Detailed association 

similarity 

 ρ Distinguishing assessment 

component importance 

OP1 Operation collection of c1  src Source class name   

 

𝑖𝑛𝑡𝑒𝑟𝑆𝑖𝑚(𝑔1, 𝑔2) = 1 −
𝑑𝜆𝑚𝑖𝑛(𝑔1,𝑔2)

max⁡(|𝑔1|,|𝑔2|)
.   (19) 

 

Here, dλmin is the minimum cost to convert g1 into 

g2, and max(|g1|,|g2|) is the most significant value of 

the sum of edges and vertices in g1 or g2. Fig. 8 shows 
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graph matching with GED in interSim and shows that 

2 is the cost of converting g1 to g2. There are add 

vertex and substitute edge operations. 

4. Class diagram assessment 

The proposed class similarity diagram (classSim) 

assessment combines semantic and structural 

similarities as a similarity assessment parameter. The 

similarity of class diagrams d1 and d2 is determined 

using Eq. (20). Semantic similarity (classSem) uses 

all lexical information that appears in the class 

diagram, and structural similarity (classStruc) uses a 

graph model representing the class diagrams. 

Structural and semantic similarities have different 

importance with respect to ρ, the value of which 

ranges from 0 to 1. 

 

𝑐𝑙𝑎𝑠𝑠𝑆𝑖𝑚 = (1 − 𝜌) × 𝑐𝑙𝑎𝑠𝑠𝑆𝑒𝑚(𝑑1, 𝑑2) +
𝜌 × 𝑐𝑙𝑎𝑠𝑠𝑆𝑡𝑟𝑢𝑐(𝑑1, 𝑑2).   (20) 

 

The explanation of each variable from Eq. (1) to 

20 can be seen in Table 2.  

5. Result 

5.1 Dataset 

The purpose of this study is to develop an  

automatic assessment method. Therefore, the data are 

a collection of class diagrams that are answers to 

student assessments. In the assessments, we gave 

students three questions related to making class 

diagrams, and each question contained a different 

project. Table 3 shows the project details. The 

projects present information on use case descriptions, 

and students construct class diagrams based on these 

use case descriptions. Each project has an answer key 

that serves as a reference for assessment. The 

collected class diagram consists of 31 diagrams from 

three different projects. 

5.2 Gold standard 

A gold standard serves as a reference for 

evaluating a proposed method's reliability. Thus, the 

proposed method's reliability refers to its agreement 

with a gold standard developed by experts. We 

measured the agreement using Gwet's AC1 [37]. 

 
Table 3. Summary of the collected class diagram 

Project Description Answers Class 

Average 

Relationship 

Average 

Outlay Financial 

recording 

11 9 7 

Library Book rental 10 9 9 

QuickBill Point of sale 10 6 6 

 
Figure. 9 The maximum agreement value of each ρ 

 

The gold standard in this study was built based on 

expert evaluation questionnaires. Experts were asked 

to assess student answers to the questions and were 

given answer keys. The assessment range was 0–100. 

The experts were software engineering lecturers who 

have taught class diagrams for two to fourteen years 

at bachelor degree programs. In this study, we relied 

on 27 experts who assessed 31 pairs of student and 

key answers. The nationality of the entire expert is 

Indonesian. Age of experts ranging from thirty to 

fifty-two years old. The experts are from nine 

different universities in Indonesia. 

5.3 Similarity assessment evaluation 

We evaluated similarity assessment by 

comparing the proposed method's results with those 

from the gold standard using Gwet's AC1 to measure 

inter-rater reliability. We normalized expert 

assessment values and the proposed method's results 

on a 1–5 scale, where the scale number represents a 

range of assessment values with an even distribution 

(1: <20, 2: <40, 3: <60, 4: <80, and 5: >80). The 

proposed method is assessed using all combinations 

of ρ, ρsem, and ρstruc as differentiators of the 

importance of assessment components. The 

experiment was repeated 1331 times with different 

weight combinations, and the weights were tweaked 

with the same inputs. The values of ρ, ρsim, and ρstruc 

were 0, 0.1, and 0.2 to 1, respectively. Fig. 9 shows 

the maximum agreement value for each instance of ρ. 

The maximum agreement value was 0.935 at ρ = 0.5, 

ρsem = 0.3, and ρstruc = 0 and 0.1. 

6. Discussion 

The maximum agreement value resulting from 

our evaluation indicates that the proposed method can 

function as reliably as an expert can. This is because 

experts and the proposed method have an almost 

perfect level of agreement. We found that experts 

look at the semantic and structural aspects of class 

diagrams equally when assessing class diagram 

similarity. Class diagrams are easy to visually 

understand using the lexical information they contain. 
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Figure. 10 Comparison of agreement with previous 

research in assessment case 

 

 
Figure. 11 Comparison of the gap to the experts 

 

For semantic similarity, experts tend to look at the 

lexical information from the class separately and tend 

to look at the property information for each class. 

Experts do not pay more attention to relationships 

between classes when making an assessment. For 

structural similarity, experts look at the structure in 

the class almost exclusively, rather than considering 

within-class and between-class structures equally. 

We conducted several evaluations of expert 

judgment before using those judgments as a gold 

standard. First, we tested the collection of expert 

answers from each pair of diagrams for correlation 

using the Pearson correlation coefficient [38]. This 

stage reduces the three pairs of diagrams, eliminating 

those that do not have strong correlations or have too 

many different answers. Second, we conducted an 

inter-rater reliability evaluation [39] to show the level 

of agreement among the experts. During this stage, 

we eliminated five experts to provide more reliable 

and homogeneous answers. The final test result for 

data reliability was 0.935 on a 0–1 scale. Therefore, 

we conclude that the data used re reliable. 

We compared research that focused solely on 

semantic aspects [28] and research that considers 

only structural aspects [21] with our proposed 

method that uses both. Fig. 10 shows that using 

structural and semantic combinations with individual 

weights can provide better agreement values than 

separate assessment. 

The maximum value of each ρ in semantic 

similarity tends to be more significant on the left side 

of the chart. In line with our proposed method, 

experts tend to look at the properties of each class 

rather than between-class relationships when 

assessing semantic aspects alone. In contrast, the 

maximum value of each ρ in structural similarity 

tends to be higher on the right side of the chart. 

Experts tend to look at relationships between classes 

rather than within-class structures when assessing 

structural aspects alone, which differ slightly from 

our proposed method. The structural similarity 

tendency still cannot be concluded in general because 

experts have difficulty accurately measuring the 

similarity of structures between two class diagrams. 

We attempted small experiments to measure simple 

class diagrams and found that experts cannot assess 

structural similarity as accurately as the proposed 

method. The proposed method uses GED, which can 

accurately compare all class relationships. Several 

factors can influence the accuracy gap between 

expert assessment and that of the proposed method. 

These factors include the number of classes, the 

complexity of each class's property structure, and the 

number of relationships between classes. Experts find 

assessment increasingly difficult if the number of 

these factors increases. 

We also compared the results of this study with 

previous studies. Ali [40] assessed the syntactic 

similarity of class names, attribute names, and 

operation names. Fig. 11 shows the results of the 

comparison. We calculate the gap from the output of 

our method and Ali's method to the expert assessment. 

The assessment results use a value range of 0 to 1 

where zero is not the same, and one is the same. 

Based on Fig. 11, 27 of the 28 assessments carried 

out by our method had a lower gap with the expert 

assessment. Therefore, our proposed method using 

semantic and structural assessment provides a closer 

value to the expert. 

The class diagrams used are not for entire projects. 

We use this limitation to maintain the reliability of 

the gold standard that is built on expert interpretation. 

Experts have difficulty assessing the similarity of two 

diagrams if those diagrams have large and complex 

shapes. Additionally, experts will be inconsistent 

when assessing many problems with complex class 

diagrams. 

7. Conclusion 

Our proposed automated assessment method can 

determine the similarity of two class diagrams as 

reliably as an expert. The level of agreement between 

the proposed method and experts was 0.935. This 

means that our proposed method has an almost 

perfect agreement with expert assessment. Class 
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diagram similarity is divided into semantic similarity 

and structural similarity. Combining these two 

similarities with a specific weight enables the best 

agreement with experts. Semantic similarity is an 

aspect experts emphasize in the case of similarity 

assessment. 

This research can be developed further. First, our 

assessment concept can be used with other UML 

diagrams because every UML diagram has both 

semantic and structural aspects. Second, further 

research is needed to ascertain experts' tendency to 

assess structural similarity to become an assessment 

standard that would be used in all assessment cases. 

Each similarity's weight can be examined for 

purposes other than assessment such as software 

reuse and clone detection. 
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