

Received: September 23, 2020. Revised: October 19, 2020. 52

International Journal of Intelligent Engineering and Systems, Vol.14, No.2, 2021 DOI: 10.22266/ijies2021.0430.06

Automated Class Diagram Assessment using Semantic and Structural

Similarities

Reza Fauzan1,2 Daniel Siahaan1* Siti Rochimah1 Evi Triandini3

1Department of Informatics, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

2Department of Electrical Engineering, Politeknik Negeri Banjarmasin, Banjarmasin, Indonesia
3Department of Information System, ITB STIKOM Bali, Denpasar, Indonesia

* Corresponding author’s Email: daniel@if.its.ac.id

Abstract: Class diagrams show classes in software and the relationships between those classes. A class diagram is a

unified modeling language diagram commonly used in education. Thus, an assessment of class diagrams is essential

for teachers who usually have students produce class diagrams based on predetermined projects. Teachers assess

student-produced class diagrams based on an answer key. However, teachers have a problem with a lack of consistency

in assessment as teachers can use different standards between answers. This research attempts to approach class

diagram assessment automatically. The proposed approach consists of two assessments: semantic and structural

similarities. Semantic similarity is calculated using lexical information in the class diagram, and structural similarity

is calculated using the diagram's structure, ignoring its lexical information. Our results show that experts see semantic

and structural similarities equally during assessment. The proposed approach shows substantial agreement with experts

in class diagram similarity assessment. Therefore, the proposed approach can automatically assess class diagram

similarity as reliably as experts can.

Keywords: Automated assessment, Class diagram, Semantic similarity, Structural similarity, UML diagram.

1. Introduction

Class diagrams are a part of a unified modeling

language (UML) that displays a software's static

structure by showing the classes within a piece of

software and the logical relationships between those

classes. Measurement of similarities between UML

diagrams has been widely studied [1,2]; however,

there are several issues with measuring class diagram

similarity, such as reuse [3,4], clone detection [5-7],

and assessment [8]. Class diagram reuse is useful

because software engineers do not need to make

diagrams from scratch, clone detection is useful when

checking for plagiarism within diagrams, and

assessment is useful for assisting teachers in

assessing student diagram design assignments.

Several previous studies have measured

similarities between two class diagrams. Park and

Bae [9] began by comparing the lexical information

within class diagrams, dividing lexical information

into class names, relationship names, and related

class information. However, lexical similarity is only

calculated syntactically. The studies [10,11]

continued by dividing similarities into between-

structure similarities in class names and structures.

Class name similarity compares the names within

each class using WordNet to find differences in

semantic meaning. The structural similarity between

classes compares each type of relationship, such as

associations, generalizations, and dependencies.

Robles [12] built an ontology domain to look for

similar class diagrams. He searched for each word in

the class diagram in that ontology domain. However,

the comparison of words is only syntactic, and reuse

is less expected in more complex class diagrams. Qiu

[13] divided class diagram similarities into two

categories: structural similarities and property

similarities. Structural similarities are seen in lexical

relationships between classes. Property similarities

are seen in the lexical attributes and operations of

Received: September 23, 2020. Revised: October 19, 2020. 53

International Journal of Intelligent Engineering and Systems, Vol.14, No.2, 2021 DOI: 10.22266/ijies2021.0430.06

each class. This study showed that combining class

structures and class properties is a good approach for

calculating similarity. Al-Khiaty and Ahmed [14-17]

measured similarities of class properties and class

diagram structures. He combined class names and

information within the class (e.g., attribute and

operation names) as class properties. The lexical

evaluation of relations in the class diagram is used to

calculate class diagram structure. Adamu [18,19]

built on previous studies by combining several UML

diagrams. He proposed a framework for measuring

similarity using the diagram's meta model [4]. He

then combined the similarity of several UML

diagrams using different similarity parameters [18].

Lexical information is used as a measurement

parameter in class diagrams [18,20]. Yuan [21]

measured structural similarity by ignoring lexical

information to convert a class diagram into a graph.

He noted that graphs could effectively measure

structural similarities between class diagrams. Huang

[22] also converted a class diagram into a graph.

Therefore, a graph can be used to represent a class

diagram.

UML diagrams can be modeled in certain forms.

Based on previous studies, we can conclude that a

UML diagram has two primary types of information:

lexical information and structural information.

Lexical information consists of all the words in the

diagram, such as class names, property names,

attribute names, and relation types. In contrast,

structural information is the UML diagram's structure

or form without any lexical information.

In this study, we focused on assessing the

similarity of UML class diagrams, which are

commonly used as teaching materials. Teachers give

assignments to students to build class diagrams based

on a project determined by the teacher. Similarity

assessment is used to assist teachers in assessing the

class diagrams that students build. However, teachers

can have difficulty assessing class diagrams from

students because class diagrams consist of many

classes that have many relationships between them

[23], [24]. Many components in a class diagram can

affect the consistency of teacher assessments. In

addition, teacher fatigue can also affect assessment

consistency. Automatic assessment is a solution to

maintain teacher consistency [25]. Jebli [26]

attempted to assess class diagrams by obtaining

lexical information from class diagrams using

machine learning and ignoring diagram structure.

However, structure is an important parameter for

assessing UML diagram similarity [27].

In this study, we developed an approach for

automatically assessing the class diagram similarities

as reliably as an expert can (i.e., a teacher who

conducts assessments). This study is a continuation

of previous studies [28] that only assessed semantic

similarity. The proposed approach divides similarity

into semantic and structural similarities. We

combined these two similarities to assess like an

expert. We divided similarity into two because the

information obtained from class diagrams consists of

lexical and structural information. Our approach can

show the inclination of a teacher's perspective in

assessing whether to look at lexical information or

class diagram structure. The tendency of perspective

in assessment is obtained from the similarity weight,

which has the best agreement value with the expert.

The proposed semantic similarity method compares

each component's lexical information using simple

natural language processing (NLP) and compares

within-class and between-class structures using graph

edit distance (GED). The assessment of the proposed

method agreement with the expert is a substantial

agreement. Therefore, our approach assesses

students' answers based on the answer key as reliable

as an expert.

The rest of this article consists of several sections:

Section 2 presents the semantic similarity assessment.

Section 3 presents the structural similarity

assessment. Section 4 presents the combination of

previous assessment into class diagram similarity

assessment. Section 5 presents the result and

evaluation. Section 6 presents our discussion about

the evaluation and findings. Section 7 presents the

conclusion of our study.

2. Semantic similarity assessment

The concept of semantic similarity assessment

involves seeing the similarity of two class diagrams

based on lexical information obtained from those

class diagrams. Information in class diagrams can be

divided into property information and relationship

information. This study discusses the lexical aspects

of each item of information. For example, for class

diagrams d1 and d2, all property information from d1

will be searched to find similarities to property

information from d2. Operating information has

many items, and each item from d1 will be compared

with each item from d2. After obtaining the semantic

similarity from each item, a greedy algorithm is

needed to locate the ideal value of the previously

calculated set of similarity values.

2.1 Semantic similarity

We determined semantic similarity using NLP

[29]. We used a common NLP approach because

words will be compared in one phrase consisting of

two words on average. As previously explained,

Received: September 23, 2020. Revised: October 19, 2020. 54

International Journal of Intelligent Engineering and Systems, Vol.14, No.2, 2021 DOI: 10.22266/ijies2021.0430.06

Figure. 1 Natural language processing in UML diagram semantic similarity assessment

Figure. 2 Class diagram elements

semantic calculations are performed in the smallest

part of each class diagram component. For example,

the class name is one of the lowest parts of a class

diagram, and class names have different characters

from ordinary lexical information. Classes can have

more than one word for a name, but the next word

must be in uppercase. Therefore, NLP for semantic

similarity has specific process details.

Fig. 1 shows the calculation procedure. The first

part of this procedure is the tokenization process.

Next, each word is given a part of speech (POS) sign.

The following procedure is to eliminate stop words

and lemmatization. The final part of the procedure is

to calculate the similarity of words using cosine

similarity.

The tokenization process involves breaking a

group of words into individual units and is performed

to adjust to the input words to be calculated. From the

previous explanation, the lexical form of the class

name, for example, getData, cannot be directly

processed. Therefore, a unique method is needed for

this tokenization process. First, if the next letter

consists of an uppercase letter, the word will be

broken up. Second, if uppercase letters are found in a

sequence, the word will not be broken up until

uppercase letters accompanied by lowercase letters

are found.

POS tagging is intended to make the token's type

known. Token types include nouns, verbs, adjectives,

and so on. This process is assisted by Stanford NLP

[30] using Stanford POS tagger with an English

language model. Tagging uses POS from the Penn

Treebank model to obtain each word's label. Before

conducting the POS tagging process, all tokens are

converted into lowercase letters.

The main objective in implementing the stop

word elimination process is reducing the number of

words in a report, which affects NLP speed and

performance. In NLP, stop words are words that are

ignored in processing, which are usually stored in

stop lists. Eliminating stop words in this study is

aimed at increasing the similarity between two series

of words based on their true meanings.

The following process is known as lemmatization,

which is the process of turning tokens into essential

words. Lemmatization aims to increase accuracy in

the next process and was assisted by Stanford NLP.

Calculation using cosine similarity [29,31] is the last

process of calculating between-word similarity.

Cosine similarity, as implemented in this study,

consists of three stages: vector making, calculation of

word similarity, and calculation of the cosine values.

Each word will be counted as a similarity to other

words to obtain words with different meanings. If

several similar words are found, only the first word

will be included in the vector. Determining words

with different meanings requires that the similarity

value of the word does not exceed a certain threshold.

The similarity of words is calculated using the Wu

and Palmer Semantic Similarity Measure [32], which

uses WordNet [33] to calculate the depth.

2.2 Class diagram semantic similarity

Before measuring the similarity between two

class diagrams, we first divided class diagram

elements into property information and relationship

information [28]. Fig. 2 shows class diagram

elements. Property information consists of class

names, attributes, and operations, and relationship

information includes association, dependency, and

generalization.

Furthermore, Fig. 2 shows that the class diagram

semantic similarity (classSem) consists of the

similarity of class diagram properties (propSim) and

relationships (relSim). Fig. 3 shows the flow of

semantic similarity calculations. Both class diagrams

will be processed in XML metadata interchange

format using a tool. Each diagram is extracted based

on class diagram components, and each extraction

Received: September 23, 2020. Revised: October 19, 2020. 55

International Journal of Intelligent Engineering and Systems, Vol.14, No.2, 2021 DOI: 10.22266/ijies2021.0430.06

Figure. 3 Flowchart of semantic similarity assessment

result is counted as a semantic similarity.

Components are calculated from the smallest to

largest. The classSem between class diagrams d1 and

d2 can be expressed as Equation 1.

𝑐𝑙𝑎𝑠𝑠𝑆𝑒𝑚(𝑑1, 𝑑2) = (1 − 𝜌𝑠𝑒𝑚) ×
𝑝𝑟𝑜𝑝𝑆𝑖𝑚(𝑑1, 𝑑2) + 𝜌𝑠𝑒𝑚 × 𝑟𝑒𝑙𝑆𝑖𝑚(𝑑1, 𝑑2)(1)

Eq. (1) shows how to assess similarities between

class diagrams d1 and d2. Properties and relationships

have a different level of interest using ρsem, the value

of which ranges from 0 to 1. Then, properties in class

diagram d1 consist of several classes. Each class in

class diagram d1 will be compared with the classes in

class diagram d2. The propSim between the two class

diagrams is expressed as Eq. (2).

Class collection C1 in class diagram d1 will be

compared with class collection C2 in class diagram

d2. The ith-class (ci) in class diagram d1 is then

compared with the jth-class (cj) in class diagram d2.

The similarity between the two classes is called cSim.

We used changePivot to change each value in the row

and column with a maximum value to 0. Algorithm 1

explains changePivot.

Received: September 23, 2020. Revised: October 19, 2020. 56

International Journal of Intelligent Engineering and Systems, Vol.14, No.2, 2021 DOI: 10.22266/ijies2021.0430.06

𝑝𝑟𝑜𝑝𝑆𝑖𝑚(𝑑1, 𝑑2) =
2×(∑ 𝑐ℎ𝑎𝑛𝑔𝑒𝑃𝑖𝑣𝑜𝑡(𝑀𝑎𝑥(∑ ∑ 𝑐𝑆𝑖𝑚(𝑐𝑖,𝑐𝑗)

|𝐶2|
𝑗=1

|𝐶1|
𝑖=1))

𝑀𝑖𝑛(|𝐶1|,|𝐶2|)
𝑘=1)

|𝐶1|+|𝐶2|
. (2)

𝑎𝑆𝑖𝑚(𝑐1, 𝑐2) =
2×(∑ 𝑐ℎ𝑎𝑛𝑔𝑒𝑃𝑖𝑣𝑜𝑡(𝑀𝑎𝑥(∑ ∑ 𝑑𝑎𝑆𝑖𝑚(𝑎𝑖,𝑎𝑗)

|𝐴2|
𝑗=1

|𝐴1|
𝑖=1))

𝑀𝑖𝑛(|𝐴1|,|𝐴2|)
𝑘=1)

|𝐴1|+|𝐴2|
. (4)

𝑜𝑝𝑆𝑖𝑚(𝑐1, 𝑐2) =
2×(∑ 𝑐ℎ𝑎𝑛𝑔𝑒𝑃𝑖𝑣𝑜𝑡(𝑀𝑎𝑥(∑ ∑ 𝑑𝑜𝑝𝑆𝑖𝑚(𝑜𝑝𝑖,𝑜𝑝𝑗)

|𝑂𝑃2|
𝑗=1

|𝑂𝑃1|
𝑖=1))

𝑀𝑖𝑛(|𝑂𝑃1|,|𝑂𝑃2|)
𝑘=1)

|𝑂𝑃1|+|𝑂𝑃2|
. (6)

Algorithm 1: changePivot

Input: two-dimension matrix and

pivot/coordinate maximum value (x,y)

1. Select pivot

2. M(x, :) = 0

3. M(:, y) = 0

Output: changed matrix

Line 1 in Algorithm 1 takes the pivot or

coordinates with the maximum value in the similarity

matrix. Line 2 changes all the values in the row pivot

(x) to 0. Line 3 changes all the values in the column

pivot (y) to 0. The cSim between classes c1 and c2

can be expressed as Eq. (3)

𝑐𝑆𝑖𝑚(𝑐1, 𝑐2) = 𝑤𝑐𝑛 × 𝑐𝑛𝑆𝑖𝑚(𝑐1, 𝑐2) + 𝑤𝑎 ×
𝑎𝑆𝑖𝑚(𝑐1, 𝑐2) + 𝑤𝑜𝑝 × 𝑜𝑝𝑆𝑖𝑚(𝑐1, 𝑐2). (3)

The similarity between the two classes is

influenced by class name similarity (cnSim), attribute

similarity (aSim), and operation similarity (opSim).

Weight wcn is the weight of cnSim between classes c1

and c2. Weight wap is the weight of aSim between

classes c1 and c2. Weight wo is the weight of opSim

between classes c1 and c2. The total of these weights

is 1. The weight composition was adopted from Al-

Khiaty [14], which showed that wa and wop were only

slightly greater than wcn. Therefore, we used weight

compositions wcn = 0.4, wa = 0.3, and wop = 0.3. The

cnSim value measures the lexical similarity of class

names of two classes with semantic similarity

described in Section 2.1. Eq. (4) shows aSim between

classes c1 and c2.

We then compared attribute collection A1 from

class c1 with attribute collection A2 from class c1. We

then used changePivot to change the values of rows

and columns in the similarity matrix following

Algorithm 1. Attributes then consist of a modifier, an

attribute name, and a data type. We must perform a

detailed attribute similarity calculation (daSim),

which contains these three items. The daSim between

attributes a1 and a2 can be expressed as Eq. (5).

𝑑𝑎𝑆𝑖𝑚(𝑎1, 𝑎2) = 𝑤𝑚𝑑 × 𝑠𝑖𝑚(𝑚𝑑1, 𝑚𝑑2) +
𝑤𝑛𝑎 × 𝐶𝑜𝑠𝑖𝑛𝑒𝑆𝑖𝑚(𝑛𝑎1, 𝑛𝑎2) + 𝑤𝑡𝑦 ×

𝑠𝑖𝑚(𝑡𝑦1, 𝑡𝑦2).(5)

Weight wmd is the weight of similarity between

modifiers md1 and md2. Weight wna is the weight of

attribute name similarity between attribute names na1

and na2. Weight wty is the weight of data type

similarity between data types ty1 and ty2. The total of

wmd, wna, and wty is 1, and the weights used are wmd =

0.1, wna = 0.7, and wty = 0.2. We emphasized name

attributes because experts see them more clearly.

Calculations of similarities between two modifiers

and between two data types are simple. If the

modifiers of the data types are the same, the similarity

value is 1. If the modifiers or data types are different,

the similarity value is 0. The similarity between

attribute names can be calculated from the lexical

information of each attribute using semantic

similarity, as shown in Section 2.1.

The opSim between all operations in c1 and all

operations in c2 is expressed as Eq. (6). Operation

collection OP1 in class c1 is compared with operation

collection OP2 in class c2. We then calculated the

similarity of each i-th operation (opi) of class c1 with

that of the j-operation (opj) of class c2. We then used

changePivot to change the values of rows and

columns in the similarity matrix following Algorithm

1. Operations consist of a modifier, an operation

name, a data type, and a parameter. Therefore, we

needed a detailed operation similarity (dopSim)

between operations op1 and op2, which contains these

four things. dopSim between operations op1 and op2

can be expressed as Eq. (7).

𝑑𝑜𝑝𝑆𝑖𝑚(𝑜𝑝1, 𝑜𝑝2) = 𝑤𝑚𝑑𝑂 ×
𝑠𝑖𝑚(𝑚𝑑𝑂1, 𝑚𝑑𝑂2) + 𝑤𝑛𝑎𝑂 ×

𝐶𝑜𝑠𝑖𝑛𝑒𝑆𝑖𝑚(𝑛𝑎𝑂1, 𝑛𝑎𝑂2) + 𝑤𝑡𝑦𝑂 ×

𝑠𝑖𝑚(𝑡𝑦𝑂1, 𝑡𝑦𝑂2) + 𝑤𝑝𝑎𝑟𝑂 × 𝑝𝑟𝑆𝑖𝑚(𝑜𝑝1, 𝑜𝑝2).

(7)

Weight wmdO is the weight of operation modifier

similarity between operation modifiers mdO1 and

mdO2. Weight wnaO is the weight of operation name

similarity between operation names naO1 and naO2.

Received: September 23, 2020. Revised: October 19, 2020. 57

International Journal of Intelligent Engineering and Systems, Vol.14, No.2, 2021 DOI: 10.22266/ijies2021.0430.06

𝑝𝑟𝑆𝑖𝑚(𝑜𝑝1, 𝑜𝑝2) =
2×(∑ 𝑐ℎ𝑎𝑛𝑔𝑒𝑃𝑖𝑣𝑜𝑡(𝑀𝑎𝑥(∑ ∑ 𝐶𝑜𝑠𝑆𝑖𝑚(𝑝𝑟𝑖,𝑝𝑟𝑗)

|𝑃𝑅2|
𝑗=1

|𝑃𝑅1|
𝑖=1))

𝑀𝑖𝑛(|𝑃𝑅1|,|𝑃𝑅2|)
𝑘=1)

|𝑃𝑅1|+|𝑃𝑅2|
. (8)

𝑟𝑎𝑆𝑖𝑚(𝑑1, 𝑑2) =
2×(∑ 𝑐ℎ𝑎𝑛𝑔𝑒𝑃𝑖𝑣𝑜𝑡(𝑀𝑎𝑥(∑ ∑ 𝑑𝑟𝑎𝑆𝑖𝑚(𝑟𝑎𝑖,𝑟𝑎𝑗)

|𝑅𝐴2|
𝑗=1

|𝑅𝐴1|
𝑖=1))

𝑀𝑖𝑛(|𝑅𝐴1|,|𝑅𝐴2|)
𝑘=1)

|𝑅𝐴1|+|𝑅𝐴2|
. (10)

Weight wtyO is the weight of operation data type

similarity between operation data types tyo1 and tyO2.

Weight wparO is the weight of parameter similarity

between operations op1 and op2. We used arbitrary

weights of wmdO = 0.1, wnaO = 0.7, wtyO = 0.1, and wparO

= 0.1, and emphasized the name of the operation.

Calculation of similarity between modifiers and data

types in operations is the same as that between

modifiers and data types in attributes. The similarity

between operation names can be calculated from the

lexical information of each operation using semantic

similarity, as shown in Section 2.1. We cannot

directly calculate the similarity of parameters (prSim)

because an operation can have more than one

parameter. prSim is expressed as Eq. (8).

Parameter collection PR1 from operation op1 is

compared with parameter collection PR2 from

operation op2. The ith-parameter (pri) of the first

operation is calculated by the jth-parameter (prj) of

the second operation. We then used changePivot to

change the values of rows and columns in the

similarity matrix following Algorithm 1. Similarity

between pri and prj is calculated using semantic

similarity, as shown in Section 2.1. The relSim

between class diagrams d1 and d2 can be expressed as

Eq. (9).

𝑟𝑒𝑙𝑆𝑖𝑚(𝑑1, 𝑑2) = 𝑤𝑟𝑎 × 𝑟𝑎𝑆𝑖𝑚(𝑑1, 𝑑2) +
𝑤𝑟𝑑 × 𝑟𝑑𝑆𝑖𝑚(𝑑1, 𝑑2) + 𝑤𝑟𝑔 × 𝑟𝑔𝑆𝑖𝑚(𝑑1, 𝑑2).

(9)

Here, wra is the weight of association relationship

similarity (raSim) between class diagrams d1 and d2,

wrd is the weight of dependency relationship

similarity (rdSim) between class diagrams d1 and d2,

and wrg is the weight of generalization relationship

similarity (rgSim) between class diagrams d1 and d2.

Relationships are separated because it is unfair to

equally compare relationships when the relationships

being compared are different. The weight

determination is adopted from previous studies [34]

by looking at the availability of elements to be

calculated. If neither diagram has generalizations, the

weight for generalizations is 0. The weight value to

be calculated is the result of sharing the group of

relationships sought by the sum relationship of the

two diagrams. For example, d1 has three associations

and one dependency, and d2 has two associations.

Thus, the weight of the association is 5/6, the weight

of dependency is 1/6, and the weight of

generalization is 0. The raSim value between class

diagrams d1 and d2 can be expressed as Eq. (10).

The association relationship collection RA1 from

class diagram d1 is compared with the association

relationship collection RA2 from class diagram d2.

The ith-association (rai) from class diagram d1 is

calculated along with the jth-association (raj) from

class diagram d2, and changePivot is used to change

the row and column values in the similarity matrix

following Algorithm 1. Furthermore, an association

relationship consists of the source class, relation

name, aggregation/composition, and target class.

Therefore, we need a detailed association relationship

similarity (draSim) between association relationships

ra1 and ra2, which can be expressed as Eq. (11).

𝑑𝑟𝑎𝑆𝑖𝑚(𝑟𝑎1, 𝑟𝑎2) = 𝑤𝑟𝑎1 × 𝐶𝑜𝑠𝑆𝑖𝑚(𝑠𝑟𝑐1, 𝑠𝑟𝑐2)
+𝑤𝑟𝑎2 × 𝐶𝑜𝑠𝑆𝑖𝑚(𝑛𝑚1, 𝑛𝑚2)
+𝑤𝑟𝑎3 × 𝑠𝑖𝑚(𝑜𝑤1, 𝑜𝑤2)

+𝑤𝑟𝑎4 × 𝐶𝑜𝑠𝑆𝑖𝑚(𝑡𝑔𝑡1, 𝑡𝑔𝑡2). (11)

draSim consists of source class src, relationship

name nm, relation ownership ow, and target class tgt.

Here, wra1 is the weight of source class similarity

between source classes src1 and src2, wra2 is the

weight of relationship name similarity between

relationship names nm1 and nm2, wra3 is the weight of

ownership similarity between ownerships ow1 and

ow2, and wra4 is the weight of target class similarity

between target classes tgt1 and tgt2. The total weight

is 1, and the weights used are wra1 = 0.3, wra2 = 0.2,

wra3 = 0.2, and wra4 = 0.3. The weight of the class

name (source class and target class) is determined to

be greater than that of the ownership and relationship

name because they are always available in class

diagrams. In contrast, relationship names are rarely

written on class diagrams and ownership consists

only of composition or aggregation. Class name and

relationship name similarities use semantic similarity,

as shown in Section 2.1. The value of ownership

similarity is 0 if they are different and 1 if they are

not different. The rdSim between class diagrams d1

and d2 can be expressed as Eq. (12).

Here, dependency relationship collection RD1

from class diagram d1 is compared with dependency

relationship collection RD2 from class diagram d2.

Received: September 23, 2020. Revised: October 19, 2020. 58

International Journal of Intelligent Engineering and Systems, Vol.14, No.2, 2021 DOI: 10.22266/ijies2021.0430.06

𝑟𝑑𝑆𝑖𝑚(𝑑1, 𝑑2) =
2×(∑ 𝑐ℎ𝑎𝑛𝑔𝑒𝑃𝑖𝑣𝑜𝑡(𝑀𝑎𝑥(∑ ∑ 𝑑𝑟𝑑𝑆𝑖𝑚(𝑟𝑑𝑖,𝑟𝑑𝑗)

|𝑅𝐷2|
𝑗=1

|𝑅𝐷1|
𝑖=1))

𝑀𝑖𝑛(|𝑅𝐷1|,|𝑅𝐷2|)
𝑘=1)

|𝑅𝐷1|+|𝑅𝐷2|
. (12)

𝑑𝑟𝑑𝑆𝑖𝑚(𝑟𝑑1, 𝑟𝑑2) =
𝐶𝑜𝑠𝑆𝑖𝑚(𝑠𝑟𝑐1,𝑠𝑟𝑐2)+𝐶𝑜𝑠𝑆𝑖𝑚(𝑡𝑔𝑡1,𝑡𝑔𝑡2)

2
. (13)

𝑟𝑔𝑆𝑖𝑚(𝑑1, 𝑑2) =
2×(∑ 𝑐ℎ𝑎𝑛𝑔𝑒𝑃𝑖𝑣𝑜𝑡(𝑀𝑎𝑥(∑ ∑ 𝑑𝑟𝑔𝑆𝑖𝑚(𝑟𝑔𝑖,𝑟𝑔𝑗)

|𝑅𝐺2|
𝑗=1

|𝑅𝐺1|
𝑖=1))

𝑀𝑖𝑛(|𝑅𝐺1|,|𝑅𝐺2|)
𝑘=1)

|𝑅𝐺1|+|𝑅𝐺2|
. (14)

𝑑𝑟𝑔𝑆𝑖𝑚(𝑟𝑔1, 𝑟𝑔2) =
𝐶𝑜𝑠𝑆𝑖𝑚(𝑠𝑟𝑐1,𝑠𝑟𝑐2)+𝐶𝑜𝑠𝑆𝑖𝑚(𝑡𝑔𝑡1,𝑡𝑔𝑡2)

2
. (15)

The ith-dependency relationship (rdi) from class

diagram d1 is calculated along with the jth-

dependency relationship (rdj) from class diagram d2,

and changePivot is used to change the row and

column values in the similarity matrix following

Algorithm 1. The dependency relationship consists of

the source and target classes. Therefore, we need an

advanced dependency relationship similarity

(drdSim) between dependency relationships rd1 and

rd2, which can be expressed as Eq. (13).

Class name (source class and target class)

similarity uses semantic similarity as shown in

Section 2.1. The generalization relationship

similarity (rgSim) between class diagrams d1 and d2

can be expressed as Eq. (14).

Generalization relationship collection RG1 from

class diagram d1 is compared with generalization

relationship collection RG2 from class diagram d2.

The ith-generalization relationship (rgi) from class

diagram d1 is calculated along with the jth-

generalization relationship (rgj) from class diagram

d2, and changePivot is used to change the row and

column values in the similarity matrix following

Algorithm 1. Furthermore, the generalization consists

of the source and target classes. Therefore, we need

an advanced generalization relationship similarity

(drgSim) between generalization relationships rg1

and rg2, which can be expressed as Eq. (15).

The class name similarity includes the source (src)

and target class names (tgt), and class name similarity

is calculated along with semantic similarity, as shown

in Section 2.1.

3. Structural similarity assessment

Structural similarity in class diagrams can be

represented by making a UML common graph (UCG)

model of each diagram. Thus, the pair of diagrams for

which similarity will be calculated is converted to

UCG, and the resulting UCG pair is searched for

similarity values.

3.1 Class diagram structural similarity

UCG models were originally intended to build

graphs that can accommodate several UML diagrams

with the same characters. In this study, we proposed

a graph that can provide both class and sequence

diagrams. The concept is that the UCG model can

calculate structural similarity between two class

diagrams and between sequence diagrams, as well as

the similarity of class and sequence diagrams. UCG

models are currently used to calculate the structural

similarity between two class diagrams. As with

graphs in general, UCG consists of two elements,

namely, vertices and edges. The UCG used in this

study is thus an improvement on conventional UCG

[21].

A UCG can only be used to create models for

class diagrams. In this study, we built a model that

can include several UML diagrams. Table 1 shows

the designation of the UCG model, which provides

for class and sequence diagrams. To this, we added

object vertex, class edge, reply message edge,

synchronous message edge, and asynchronous

message edge components. We propose calculations

on sequence diagrams similar to class diagram

Table 1. UML common graph description

No Type Name Tag

1 Vertex Class Vertex vc

2 Vertex Attribute Vertex va

3 Vertex Operation Vertex vo

4 Vertex Parameter Vertex vp

5 Vertex Object Vertex vob

6 Edge Attribute Edge ea

7 Edge Operation Edge eo

8 Edge Parameter Edge ep

9 Edge Association Edge e1

10 Edge Generalization Edge e2

11 Edge Aggregation Edge e3

12 Edge Composition Edge e4

13 Edge Dependency Edge e5

14 Edge Realization Edge e6

15 Edge Class Edge ec

16 Edge Reply Message Edge e7

17 Edge Synchronous Message Edge e8

18 Edge Asynchronous Message Edge e9

Received: September 23, 2020. Revised: October 19, 2020. 59

International Journal of Intelligent Engineering and Systems, Vol.14, No.2, 2021 DOI: 10.22266/ijies2021.0430.06

Figure. 4 Transformation of a class diagram into a UML

common graph

calculations. These calculations are based on

interactions between classes in the class diagram that

also occur in the sequence diagram (intraSim). The

difference is the information in the class (interSim).

Following Table 1, we can transform a class

diagram to a UCG. Fig. 4 illustrates this process. The

graph shows that a class can have zero or more

attributes, zero or more operations, and zero or more

related classes. Thus, an operation can also have zero

or more parameters.

3.2 UCG similarity assessment

We obtained the structural similarity assessment

of the class diagram from the UCG similarity

assessment. Fig. 5 shows an assessment of structural

similarity. Diagrams are divided based on structure

and then calculated from the smallest graph. The

results of these calculations are then entered into the

next calculation.

All proposed structural calculations disregard the

lexical information of the class diagram because

structural similarity is different from semantic

similarity, as explained previously. Structural

similarity only considers the types of components in

the class diagram. The UCG of class diagrams

contains two types of information: intraStructure and

interStructure [21]. IntraStructure (intraSim)

contains the number of attributes and operations of

Figure. 5 Flowchart of structural similarity assessment

each class, and interStructure (interSim) includes the

relationship information between the two classes.

Consequently, the structural similarity between two

UCGs must consider both classes of information, the

importance of which is distinguished by ρstruc, which

ranges from 0 to 1. Eq. (16) shows the structural

assessment between class diagrams d1 and d2.

𝑐𝑙𝑎𝑠𝑠𝑆𝑡𝑟𝑢𝑐(𝑑1, 𝑑2) = (1 − 𝜌𝑠𝑡𝑟𝑢𝑐) ×
𝑖𝑛𝑡𝑟𝑎𝑆𝑖𝑚(𝑔1, 𝑔2) + 𝜌𝑠𝑡𝑟𝑢𝑐 × 𝑖𝑛𝑡𝑒𝑟𝑆𝑖𝑚(𝑔1, 𝑔2).

(16)

Graphs g1 and g2 are the initial and the

comparative UCGs, respectively. Unlike previous

studies, we calculated intraSim by combining GED

[35] using greedy algorithms. Eq. (17) shows how to

calculate intraSim. The information in each class

contains numbers of attributes, operations, and

parameters. Thus, a graph is split into several

subgraphs based on classes. Here, vci is a subgraph of

g1 and g2. Thus, each class of g1 is calculated using

the GED for all classes of g2 as Eq. (17).

Here, VC1 is a collection of subgraphs in g1, and

VC2 is a collection of subgraphs in g2. The

changePivot function is to change the all points row

and column values to 0 following Algorithm 1. After

determining the similarity of the two subgraphs

between g1 and g2 using GED (GED (vci, vcj)), the

greedy algorithm finds the optimal similarity value

between the two. This value is then assigned to be the

value of intraSim. GED calculates the minimum cost

to convert g1 to g2, and the minimum costs are

calculated as Eq. (18).

Received: September 23, 2020. Revised: October 19, 2020. 60

International Journal of Intelligent Engineering and Systems, Vol.14, No.2, 2021 DOI: 10.22266/ijies2021.0430.06

Figure. 6 Subgraph matching using graph edit distance in intraSim

𝑖𝑛𝑡𝑟𝑎𝑆𝑖𝑚(𝑔1, 𝑔2) =
2×(∑ 𝑐ℎ𝑎𝑛𝑔𝑒𝑃𝑖𝑣𝑜𝑡(𝑀𝑎𝑥(∑ ∑ 𝐺𝐸𝐷(𝑣𝑐𝑖,𝑣𝑐𝑗)

|𝑉𝐶2|
𝑗=1

|𝑉𝐶1|
𝑖=1))

𝑀𝑖𝑛(|𝑉𝐶1|,|𝑉𝐶2|)
𝑘=1)

|𝑉𝐶1|+|𝑉𝐶2|
. (17)

𝑑𝜆𝑚𝑖𝑛
(𝑔1, 𝑔2) =

𝑚𝑖𝑛
𝜆 ∈ 𝛾(𝑔1, 𝑔2)

∑ 𝑐(𝑒𝑖)𝑒𝑖∈𝜆 .

(18)

Here, 𝑑𝜆𝑚𝑖𝑛
 is the lowest cost graph path. GED

searches for all possible permutations of the path and

calculates the cost of changing g1 to g2. The GED we

used has three operations: substitution, addition, and

deletion. Substitution is accomplished by changing

the edges, addition is done by adding edges and

vertices according to the destination graph, and

deletion is performed by removing edges and vertices

according to the destination graph. Here, λmin

produces the smallest change cost amount, so it must

be normalized into a 0–1 scale. Fig. 6 illustrates how

g1 subgraphs are changed into g2 subgraphs to

calculate intraSim. Fig. 6 shows that the minimum

cost for converting the first subgraph into the second

subgraph is 3. Therefore, the normalized value of

similarity for the two subgraphs is 1 − (3/11). 11 is

obtained by taking the maximum of the sum of

vertices and edges in g1 and g2.

Unlike previous studies, we used GED [36] to

measure interSim, which only takes the relationship

information between classes from UCGs, meaning

that the shape of the graph to be calculated differs

from intraSim. Fig. 7 shows an example of the form

of interSim used to measure the similarity of two

class diagrams, CD1 and CD2. CD1 has three classes

and two relations, and CD2 has three classes and three

relations.

Prior research used a maximum common

subgraph that was more suitable for reuse. In this

study, we used GED because it matches the similarity

assessment that must not see a portion of the graph

content. Eq. (19) measures interSim with the concept

of GED.

Figure. 7 Graph used to measure interSim

Received: September 23, 2020. Revised: October 19, 2020. 61

International Journal of Intelligent Engineering and Systems, Vol.14, No.2, 2021 DOI: 10.22266/ijies2021.0430.06

Figure. 8 Graph matching using graph edit distance in interSim

Table 2. Variable description
Variable Description Variable Description Variable Description

classSem Semantic assessment OP2 Operation collection of c2 nm Name of the relationship

d1 Firts class diagram opi The i-operation of OP1 ow aggregation/composition

d2 Second class diagram opj The j-operation of OP2 tgt Target class name

ρsem Distinguishing semantic

component importance

 dopSi

m

Detailed operation

similarity

 wra1 Weight of source class name

propSim Property similarity mdO1 Modifier of op1 wra2 Weight of relationship name

relSim Relationship similarity mdO2 Modifier of op2 wra3 Weight of relationship own

C1 Class collection of d1 naO1 Name of operation op1 wra4 Weight of target class name

C2 Class collection of d2 naO2 Name of operation op2 RD1 Dependency collection of d1

ci The i-class from C1 tyO1 Data type of op1 RD2 Dependency collection of d2

cj The j-class from C2 tyO2 Data type of op2 rdi The i-relationship of RD1

cSim Class similarity prSim Parameter similarity rdj The j-relationship of RD2

cnSim Class Name Similarity wmdO Weight of operation

modifier similarity

 drdSim Detailed dependency

similarity

aSim Attribute Similarity wnaO Weight of operation

name similarity

 RG1 Generalization collection of

d1

opSim Operation Similarity wtyO Weight of operation data

type similarity

 RG2 Generalization collection of

d2

wcn Weight of class name

similarity

 wparO Weight of parameter

similarity

 rgi The i-relationship of RG1

wa Weight of attribute

similarity

 PR1 Parameter collection of

operation op1

 rgj The j-relationship of RG2

wop Weight of operation

similarity

 PR2 Parameter collection of

operation op2

 drgSim Detailed generalization

similarity

A1 Attribute collection of c1 pri The i-parameter of op1 classStruc Structural assessment

A2 Attribute collection of c2 prj The j-parameter of op2 ρstruc Distinguishing structural

component importance

ai The i-attribute from A1 relSim Relationship similarity intraSim Similarity of intraStructure

aj The j-attribute from A2 raSim Association similarity interSim Similarity of interStructure

daSim Detailed attribute

similarity

 rdSim Dependency similarity g1 Translated graph of d1

md1 Modifier of attribute a1 rgSim Generalization similarity g2 Translated graph of d2

md2 Modifier of attribute a2 wra Weight of association

similarity

 VC1 Collection of subgraphs in g1

na1 Name of attribute a1 wrd Weight of dependency

similarity

 VC2 Collection of subgraphs in g1

na2 Name of attribute a2 wrg Weight of generalization

similarity

 vci The i-graph from VC1

ty1 Data type of attribute a1 RA1 Association collection

from d1

 vcj The j-graph from VC2

ty2 Data type of attribute a2 RA2 Association collection

from d2

 𝑑𝜆𝑚𝑖𝑛
 The lowest cost graph path

wmd Weight of modifier rai The i-relationship of RA1 c(ei) The cost of transforming g1

into g2

wna Weight of attribute name raj The j-relationship of RA2 classSim Class diagram similarity

assessment

wty Weight of data type draSim Detailed association

similarity

 ρ Distinguishing assessment

component importance

OP1 Operation collection of c1 src Source class name

𝑖𝑛𝑡𝑒𝑟𝑆𝑖𝑚(𝑔1, 𝑔2) = 1 −
𝑑𝜆𝑚𝑖𝑛(𝑔1,𝑔2)

max⁡(|𝑔1|,|𝑔2|)
. (19)

Here, dλmin is the minimum cost to convert g1 into

g2, and max(|g1|,|g2|) is the most significant value of

the sum of edges and vertices in g1 or g2. Fig. 8 shows

Received: September 23, 2020. Revised: October 19, 2020. 62

International Journal of Intelligent Engineering and Systems, Vol.14, No.2, 2021 DOI: 10.22266/ijies2021.0430.06

graph matching with GED in interSim and shows that

2 is the cost of converting g1 to g2. There are add

vertex and substitute edge operations.

4. Class diagram assessment

The proposed class similarity diagram (classSim)

assessment combines semantic and structural

similarities as a similarity assessment parameter. The

similarity of class diagrams d1 and d2 is determined

using Eq. (20). Semantic similarity (classSem) uses

all lexical information that appears in the class

diagram, and structural similarity (classStruc) uses a

graph model representing the class diagrams.

Structural and semantic similarities have different

importance with respect to ρ, the value of which

ranges from 0 to 1.

𝑐𝑙𝑎𝑠𝑠𝑆𝑖𝑚 = (1 − 𝜌) × 𝑐𝑙𝑎𝑠𝑠𝑆𝑒𝑚(𝑑1, 𝑑2) +
𝜌 × 𝑐𝑙𝑎𝑠𝑠𝑆𝑡𝑟𝑢𝑐(𝑑1, 𝑑2). (20)

The explanation of each variable from Eq. (1) to

20 can be seen in Table 2.

5. Result

5.1 Dataset

The purpose of this study is to develop an

automatic assessment method. Therefore, the data are

a collection of class diagrams that are answers to

student assessments. In the assessments, we gave

students three questions related to making class

diagrams, and each question contained a different

project. Table 3 shows the project details. The

projects present information on use case descriptions,

and students construct class diagrams based on these

use case descriptions. Each project has an answer key

that serves as a reference for assessment. The

collected class diagram consists of 31 diagrams from

three different projects.

5.2 Gold standard

A gold standard serves as a reference for

evaluating a proposed method's reliability. Thus, the

proposed method's reliability refers to its agreement

with a gold standard developed by experts. We

measured the agreement using Gwet's AC1 [37].

Table 3. Summary of the collected class diagram

Project Description Answers Class

Average

Relationship

Average

Outlay Financial

recording

11 9 7

Library Book rental 10 9 9

QuickBill Point of sale 10 6 6

Figure. 9 The maximum agreement value of each ρ

The gold standard in this study was built based on

expert evaluation questionnaires. Experts were asked

to assess student answers to the questions and were

given answer keys. The assessment range was 0–100.

The experts were software engineering lecturers who

have taught class diagrams for two to fourteen years

at bachelor degree programs. In this study, we relied

on 27 experts who assessed 31 pairs of student and

key answers. The nationality of the entire expert is

Indonesian. Age of experts ranging from thirty to

fifty-two years old. The experts are from nine

different universities in Indonesia.

5.3 Similarity assessment evaluation

We evaluated similarity assessment by

comparing the proposed method's results with those

from the gold standard using Gwet's AC1 to measure

inter-rater reliability. We normalized expert

assessment values and the proposed method's results

on a 1–5 scale, where the scale number represents a

range of assessment values with an even distribution

(1: <20, 2: <40, 3: <60, 4: <80, and 5: >80). The

proposed method is assessed using all combinations

of ρ, ρsem, and ρstruc as differentiators of the

importance of assessment components. The

experiment was repeated 1331 times with different

weight combinations, and the weights were tweaked

with the same inputs. The values of ρ, ρsim, and ρstruc

were 0, 0.1, and 0.2 to 1, respectively. Fig. 9 shows

the maximum agreement value for each instance of ρ.

The maximum agreement value was 0.935 at ρ = 0.5,

ρsem = 0.3, and ρstruc = 0 and 0.1.

6. Discussion

The maximum agreement value resulting from

our evaluation indicates that the proposed method can

function as reliably as an expert can. This is because

experts and the proposed method have an almost

perfect level of agreement. We found that experts

look at the semantic and structural aspects of class

diagrams equally when assessing class diagram

similarity. Class diagrams are easy to visually

understand using the lexical information they contain.

Received: September 23, 2020. Revised: October 19, 2020. 63

International Journal of Intelligent Engineering and Systems, Vol.14, No.2, 2021 DOI: 10.22266/ijies2021.0430.06

Figure. 10 Comparison of agreement with previous

research in assessment case

Figure. 11 Comparison of the gap to the experts

For semantic similarity, experts tend to look at the

lexical information from the class separately and tend

to look at the property information for each class.

Experts do not pay more attention to relationships

between classes when making an assessment. For

structural similarity, experts look at the structure in

the class almost exclusively, rather than considering

within-class and between-class structures equally.

We conducted several evaluations of expert

judgment before using those judgments as a gold

standard. First, we tested the collection of expert

answers from each pair of diagrams for correlation

using the Pearson correlation coefficient [38]. This

stage reduces the three pairs of diagrams, eliminating

those that do not have strong correlations or have too

many different answers. Second, we conducted an

inter-rater reliability evaluation [39] to show the level

of agreement among the experts. During this stage,

we eliminated five experts to provide more reliable

and homogeneous answers. The final test result for

data reliability was 0.935 on a 0–1 scale. Therefore,

we conclude that the data used re reliable.

We compared research that focused solely on

semantic aspects [28] and research that considers

only structural aspects [21] with our proposed

method that uses both. Fig. 10 shows that using

structural and semantic combinations with individual

weights can provide better agreement values than

separate assessment.

The maximum value of each ρ in semantic

similarity tends to be more significant on the left side

of the chart. In line with our proposed method,

experts tend to look at the properties of each class

rather than between-class relationships when

assessing semantic aspects alone. In contrast, the

maximum value of each ρ in structural similarity

tends to be higher on the right side of the chart.

Experts tend to look at relationships between classes

rather than within-class structures when assessing

structural aspects alone, which differ slightly from

our proposed method. The structural similarity

tendency still cannot be concluded in general because

experts have difficulty accurately measuring the

similarity of structures between two class diagrams.

We attempted small experiments to measure simple

class diagrams and found that experts cannot assess

structural similarity as accurately as the proposed

method. The proposed method uses GED, which can

accurately compare all class relationships. Several

factors can influence the accuracy gap between

expert assessment and that of the proposed method.

These factors include the number of classes, the

complexity of each class's property structure, and the

number of relationships between classes. Experts find

assessment increasingly difficult if the number of

these factors increases.

We also compared the results of this study with

previous studies. Ali [40] assessed the syntactic

similarity of class names, attribute names, and

operation names. Fig. 11 shows the results of the

comparison. We calculate the gap from the output of

our method and Ali's method to the expert assessment.

The assessment results use a value range of 0 to 1

where zero is not the same, and one is the same.

Based on Fig. 11, 27 of the 28 assessments carried

out by our method had a lower gap with the expert

assessment. Therefore, our proposed method using

semantic and structural assessment provides a closer

value to the expert.

The class diagrams used are not for entire projects.

We use this limitation to maintain the reliability of

the gold standard that is built on expert interpretation.

Experts have difficulty assessing the similarity of two

diagrams if those diagrams have large and complex

shapes. Additionally, experts will be inconsistent

when assessing many problems with complex class

diagrams.

7. Conclusion

Our proposed automated assessment method can

determine the similarity of two class diagrams as

reliably as an expert. The level of agreement between

the proposed method and experts was 0.935. This

means that our proposed method has an almost

perfect agreement with expert assessment. Class

Received: September 23, 2020. Revised: October 19, 2020. 64

International Journal of Intelligent Engineering and Systems, Vol.14, No.2, 2021 DOI: 10.22266/ijies2021.0430.06

diagram similarity is divided into semantic similarity

and structural similarity. Combining these two

similarities with a specific weight enables the best

agreement with experts. Semantic similarity is an

aspect experts emphasize in the case of similarity

assessment.

This research can be developed further. First, our

assessment concept can be used with other UML

diagrams because every UML diagram has both

semantic and structural aspects. Second, further

research is needed to ascertain experts' tendency to

assess structural similarity to become an assessment

standard that would be used in all assessment cases.

Each similarity's weight can be examined for

purposes other than assessment such as software

reuse and clone detection.

Conflicts of Interest

The authors declare no conflict of interest.

Author Contributions

Conceptualization, Reza Fauzan and Daniel

Siahaan; methodology, Reza Fauzan and Daniel

Siahaan; software, Reza Fauzan; validation, Reza

Fauzan, Daniel Siahaan, and Siti Rochimah; formal

analysis, Reza Fauzan, Daniel Siahaan, and Siti

Rochimah; investigation, Evi Triandini; resources,

Evi Triandini; data curation, Siti Rochimah;

writing—original draft preparation, Reza Fauzan;

writing—review and editing, Daniel Siahaan and Siti

Rochimah; visualization, Reza Fauzan and Evi

Triandini; supervision, Daniel Siahaan and Siti

Rochimah; project administration, Daniel Siahaan.

Acknowledgments

This research was funded by the Ministry of

Research and Technology/National Research and

Innovation Agency of the Republic of Indonesia.

This research is a collaboration amongst Institut

Teknologi Sepuluh Nopember, Politeknik Negeri

Banjarmasin, and ITB STIKOM Bali.

References

[1] L. J. Gonçales and K. Farias, “Towards a hybrid

approach to measure similarity between UML

models”, In: Proc. of ACM Int. Conf. Ser., 2019.

[2] L. J. Gonçales, K. Farias, and V. Bischoff, “On

the effects of developers' intuition on measuring

similarity between UML models”, In: Proc. of

ACM Int. Conf. Ser., 2019.

[3] W. N. Robinson and H. G. Woo, “Finding

reusable UML sequence diagrams

automatically”, IEEE Softw., Vol. 21, No. 5, pp.

60–67, 2004, doi: 10.1109/MS.2004.1331304.

[4] A. Adamu and W. M. N. W. Zainoon, “A

Framework for Enhancing the Retrieval of UML

Diagrams”, In: Proc. of Software Reuse:

Bridging with Social-Awareness 15th

International Conference, ICSR 2016, pp. 384–

390, 2016.

[5] S. Singh, “Clone Detection in UML Class

Models using Class Metrics”, ACM SIGSOFT

Softw. Eng. Notes, Vol. 39, No. 3, pp. 1–4, 2014.

[6] H. Storrle, “Towards Clone Detection in UML

Domain Models”, Softw. Syst. Model., Vol. 12,

No. 2, pp. 307–329, 2013.

[7] J. Kaur and R. Singh, “Implementation of Model

Cloning in Software Models using UML

diagrams”, Int. J. Technol. Comput., Vol. 2, No.

4, pp. 114–119, 2016.

[8] G. D. Kuh, N. Jankowski, S. O. Ikenberry, and J.

Kinzie, Knowing what students know and can

do: The current state of student learning

outcomes assessment in US colleges and

universities, No. January. Champaign: National

Institute for Learning Outcomes Assessment,

2014.

[9] W. J. Park and D. H. Bae, “A two-stage

framework for UML specification matching”,

Inf. Softw. Technol., Vol. 53, No. 3, pp. 230–244,

2011.

[10] H. O. Salami and M. Ahmed, “A framework for

reuse of multi-view UML artifacts”, Int. J. Soft

Comput. Softw. Eng., Vol. 3, No. 3, pp. 156–162,

2013.

[11] W. K. G. Assuncao and S. R. Vergilio, “Class

Diagram Retrieval with Particle Swarm

Optimization”, In: Proc. of the 25th Software

Engineering on International Conf. &

Knowledge Engineering, pp. 632–637, 2013.

[12] K. Robles, A. Fraga, J. Morato, and J. Llorens,

“Towards an ontology-based retrieval of UML

class diagrams”, Inf. Softw. Technol., Vol. 54,

No. 1, pp. 72–86, 2012.

[13] D. H. Qiu, H. Li, and J. L. Sun, “Measuring

Software Similarity based on Structure and

Property of Class Diagram”, In: Proc. of Sixth

International Conf. on Advanced Computational

Intelligence, pp. 75–80, 2013.

[14] M. A.-R. Al-Khiaty and M. Ahmed, “UML

Class Diagrams: Similarity Aspects and

Matching”, Lect. Notes Softw. Eng., Vol. 4, No.

1, pp. 41–47, 2016.

[15] M. A. R. Al-Khiaty and M. Ahmed, “Matching

UML class diagrams using a Hybridized

Greedy-Genetic algorithm”, In: Proc. of Int. Sci.

Received: September 23, 2020. Revised: October 19, 2020. 65

International Journal of Intelligent Engineering and Systems, Vol.14, No.2, 2021 DOI: 10.22266/ijies2021.0430.06

Tech. Conf. Comput. Sci. Inf. Technol., Vol. 1,

pp. 161–166, 2017.

[16] M. A.-R. M. Al-Khiaty and M. Ahmed,

“Similarity Assessment of UML Class Diagrams

using a Greedy Algorithm”, In: Proc. of

International Computer Science and

Engineering Conf., pp. 19–23,2014.

[17] M. A.-R. Al-Khiaty and M. Ahmed, “Similarity

assessment of UML class diagrams using

simulated annealing”, In: Proc. of International

Conf. on Software Engineering and Service

Science, pp. 19–23, 2014.

[18] A. Adamu and W. M. N. W. Zainon, “Multiview

Similarity Assessment Technique of UML

Diagrams”, Procedia Comput. Sci., Vol. 124, pp.

311–318, 2017.

[19] A. Adamu and W. M. N. W. Zainon, “Similarity

Assessment of UML Sequence Diagrams Using

Dynamic Programming”, In: Proc. of

International Visual Informatics Conf., vol. 1,

pp. 270–278, 2017.

[20] A. Adamu, W. M. N. Wan Zainon, and S. M.

Abdulrahman, “Empirical investigation of UML

models matching through different weight

calibration”, In: Proc. of ACM Int. Conf. Ser.,

Vol. Part F1479, pp. 167–172, 2019.

[21] Z. Yuan, L. Yan, and Z. Ma, “Structural

similarity measure between UML class

diagrams based on UCG”, Requir. Eng., No.

0123456789, pp. 1–17, 2019.

[22] L. Huang, Y. Duan, X. Sun, Z. Lin, and C. Zhu,

“Enhancing UML Class Diagram Abstraction

with Knowledge Graph”, In: Proc. of

International Conf. on Intelligent Data

Engineering and Automated Learning, pp. 606–

616, 2016.

[23] J. Masip, C. Martínez, I. Blandón-Gitlin, N.

Sánchez, C. Herrero, and I. Ibabe, “Learning to

detect deception from evasive answers and

inconsistencies across repeated interviews: A

study with lay respondents and police officers”,

Front. Psychol., Vol. 8, No. JAN, pp. 1–17, 2018.

[24] A. Ylonen, H. Gillespie, and A. Green,

“Disciplinary differences and other variations in

assessment cultures in higher education:

exploring variability and inconsistencies in one

university in England”, Assess. Eval. High.

Educ., Vol. 43, No. 6, pp. 1009–1017, 2018.

[25] J. Moreno and A. F. Pineda, “A Framework for

Automated Formative Assessment in

Mathematics Courses”, IEEE Access, Vol. 8, pp.

30152–30159, 2020.

[26] M. Y. Jebli, R., Elbouhdidi, J., & Chkouri,

“Automatic Evaluation of UML Class Diagrams

Using the XML Schema Matching and the

Machine Learning Algorithm”, in Advanced

Intelligent Systems for Sustainable Development

(AI2SD'2018), 2019, Vol. 912, pp. 149–156.

[27] G. Gleb and N. Alexey, “Approach to

determining the structural similarity of software

projects”, Open Semant. Technol. Des. Intellect.

Syst., 2018.

[28] R. Fauzan, D. Siahaan, and S. Rochimah, “Class

Diagram Similarity Measurement : A Different

Approach”, In: Proc. of 2018 3rd International

Conf. on Information Technology, Information

System and Electrical Engineering (ICITISEE),

pp. 215–219, 2018.

[29] G. Majumder, P. Pakray, A. Gelbukh, and D.

Pinto, “Semantic textual similarity methods,

tools, and applications: A survey”, Comput. y

Sist., Vol. 20, No. 4, pp. 647–665, 2016.

[30] C. D. Manning, J. Bauer, J. Finkel, and S. J.

Bethard, “The Stanford CoreNLP Natural

Language Processing Toolkit”, In: Proc. of 52nd

Annual Meeting of the Association for

Computational Linguistics: System

Demonstrations, pp. 55–60, 2014.

[31] L. J. Garcia Castro, R. Berlanga, and A. Garcia,

“In the pursuit of a semantic similarity metric

based on UMLS annotations for articles in

PubMed Central Open Access”, J. Biomed.

Inform., Vol. 57, pp. 204–218, 2015.

[32] J. Gao, B. Zhang, and X. Chen, “A WordNet-

based semantic similarity measurement

combining edge-counting and information

content theory”, Eng. Appl. Artif. Intell., Vol. 39,

pp. 80–88, 2015.

[33] Y. Feng, E. Bagheri, F. Ensan, and J. Jovanovic,

“The state of the art in semantic relatedness: a

framework for comparison”, Knowl. Eng. Rev.,

pp. 1–30, 2017.

[34] R. Fauzan, D. Siahaan, S. Rochimah, and E.

Triandini, “Activity diagram similarity

measurement: A different approach”, in 2018

International Seminar on Research of

Information Technology and Intelligent Systems,

ISRITI 2018, pp. 601–605, 2018.

[35] V. Carletti, B. Gaüzère, L. Brun, and M. Vento,

“Approximate Graph Edit Distance

Computation Combining Bipartite Matching and

Exact Neighborhood Substructure Distance”, in

International Workshop on Graph-Based

Representations in Pattern Recognition, pp.

188–197, 2015.

[36] K. Riesen and H. Bunke, “Graph Edit Distance -

Novel Approximation Algorithms”, in

Handbook of Pattern Recognition and Computer

Vision, University of Birmingham, pp. 275–291,

2016.

Received: September 23, 2020. Revised: October 19, 2020. 66

International Journal of Intelligent Engineering and Systems, Vol.14, No.2, 2021 DOI: 10.22266/ijies2021.0430.06

[37] K. Gwet, “Kappa Statistic is not satisfactory for

assessing the extent of agreement between

raters”, Stat. Methods Inter-Rater Reliab.

Assessmen, No. 1, pp. 1–5, 2002.

[38] J. Benesty, J. Chen, Y. Huang, and I. Cohen,

“Pearson Correlation Coefficient”, in Noise

reduction in speech …, Vol. 2, Springer Berlin

Heidelberg, p. 229, 2009.

[39] R. T. Lange, “Inter-rater Reliability”, in

Encyclopedia of Clinical Neuropsychology,

Kreutzer, J. S. and DeLuca, J. Caplan, and Bruce,

Eds. Springer New York, pp. 1348-1348, 2011.

[40] N. H. Ali, Z. Shukur, and S. Idris, “A Design of

an Assessment System for UML Class Diagram

Noraida”, In: Proc. of - the 2007 International

Conference on Computational Science and its

Applications, ICCSA 2007, 2007, pp. 539–544,

doi: 10.1109/ICCSA.2007.31.

