
ISBN 978-1-5386-7082-8
IEEE Catalog Number CFP18G48-ART

Class Diagram Similarity Measurement: A Different
Approach

1st Reza Fauzan, 2nd Daniel Siahaan, 3rd Siti Rochimah
Departement of Informatics, Institut Teknologi Sepuluh Nopember

Surabaya, Indonesia
reza.fauzan@poliban.ac.id, daniel@its.ac.id, siti@if.its.ac.id

4th Evi Triandini
Departement of Information System, STMIK STIKOM Bali

Bali, Indonesia
evi@stikom-bali.ac.id

Abstract— Unified Modeling Language (UML) is a
standard modeling language for specifying, documenting, and
building software. One of the problems of designing a model
using UML is that it takes a relatively long time to create a
model form the scratch. Reusing models can help accelerate
the software development process. Previous researches related
with measuring similarity of class diagrams were focused on
textual and structural similarity between models. They
structural similarity ignores the specific characteristics of
relations resided in a class diagram and its components. Based
on these problems, this study proposed a measurement
similarity method of UML class diagrams based on their
components and relations. The method improves the previous
method by introducing various kind of relations in a class
diagram as part of the parameters to calculate the similarity.
The initial investigation of this paper shows that all parameters
could determine the similarity of models.

Keywords—class diagram, measurement similarity method,
class relations

I. INTRODUCTION

Unified Modeling Language (UML) is a standard
modeling language for specifying, documenting, and
building a software [1]. UML can also be referred to as a
standard language in modeling that is often used by software
developers long ago [2], [3]. UML helps designers to model
interactions between systems and users, interactions between
objects, object behavior, and implementation and logical
structure of the system [4].

UML development has several problems. One problem
that is often found when making UML is that it takes a long
time if it is required to make it from the beginning [5]. Then,
reusing UML diagrams appears as a solution to the problem.
Reusing UML diagrams can be done using software that was
developed before, not from the beginning [6]. Reusing UML
diagrams can help accelerate the software development
process. In addition, reusing UML can reduce the costs and
risks used [7].

Reusing UML diagrams requires a method of calculating
similarities between artifacts in UML diagrams. Calculating
the similarity between two artifacts UML diagrams is an
important and challenging work in Software Engineering [8].
This is challenging because we have to look at UML
diagrams with more than one point of view [9]. These many
viewpoints make it difficult to calculate the similarities
between artifacts in different UML diagrams. In addition,
one of the disadvantages of software reuse is an attempt to
find and adjust components that can be reused [7], [10].

The determination of similarity is an effort made in
maximizing the reuse of UML diagrams. Previous research
[11] has attempted to calculate the similarities between UML
artifacts in class diagrams. Similarities in UML class
diagrams are calculated from the structure of relationships
between classes. However, this study does not pay attention
to what type of relationship. Although the UML class
diagram has different types of relationships, as long as it has
a semantically similar class it will still be said to be similar.
So that it can be said that the comparison is not equivalent.
And, in further research [12], [13] conducted, information
obtained from UML class diagrams must be further
reproduced. Such information is like data types, methods,
parameters, and so on. They have also developed a method
of calculation in the next research by considering the type of
relation [14]. However, comparing different types of
relationships makes unfair comparisons.

Other research [9] do calculations on several UML
diagrams. The results obtained are class information and
inter-class relations are good indicators in calculating
similarities between UML diagrams. However, the study
cannot recognize the inconsistencies of words between UML
artifact diagrams. Semantic approach is needed as a solution
to these problems. The semantic approach is done using
natural language processing. Some researches that use
natural language processing can help program a more precise
word recognition system [15]–[18].

Structural and semantic calculation methods have been
carried out in previous research [19]. The study proves that
the similarity of structure and semantics in UML diagrams is
a good indicator in calculating the similarity of UML
diagrams. This paper proposed a measurement similarity
method of UML class diagrams based on their components
and relations.

II. RESEARCH METHOD

This section describes the methods that are carried out in
this paper. The calculation method is adapted from previous
studies and then implemented in the UML class diagram.
The stage is to prepare a UML class diagram and then
calculate the similarity of the UML class diagram.

A. Diagram Preprocessing

Calculation of similarities between 2 UML class
diagrams requires preprocessing. This is done to retrieve any
information that can be taken from the diagram. The
preprocessing diagram produces the metadata from each
class diagram into a class diagram metamodel. In this case,

2018 3rd International Conference on Information Technology, Information Systems and Electrical Engineering
(ICITISEE), Yogyakarta, Indonesia

978-1-5386-7082-8/18/$31.00 ©2018 IEEE215

we propose the metadata model for the class diagram as
shown in Figure 1. The metamodel is built as a whole and it
has several parts in it. The parts can be grouped into two
things, namely component and relation. Component consist
of classes, attributes, and operations. Classes have names and
stereotypes. Attributes have stereotypes, names, and attribute
types. And operations have stereotypes, names, types of
operations, and parameters. Whereas relations consist of
associations, dependencies, and generalizations. The
association relation has the initial class, the name of the
relation, multiplicity, ownership (aggregation / composition),
and the destination class. Dependency has an initial class,
relation name, and destination class. Generalization has an
initial class and destination class.

Fig. 2. UML Class Diagram Example 1

Metadata retrieval in UML class diagrams is done using a
tool. The tool can convert UML class diagrams into XMI-
formats. Based on Fig 2, some of the metadata retrieval
results from XMI-format are as follows.

Component

 class : BankAccount

 attribute :

  attribute_1 : (private, accountNo, String)

  attribute_2 : (private, balance, double)

 operation :

  operation_1 : (public, returnBalance, double)

  operation_2 : (public, updateBalance, double)

  parameter_1 : (debitCredit)

Relation

 association :

  association_1 : (BankAccount, 1, 1, Customer)

  association_2 : (BankAccount, 0, *, Transaction)

The BankAccount class has two attributes, namely
attribute_1 and atribute_2. Attribute_1 has a private
stereotype, accountNo name, and String data type.
Attribute_2 has a private stereotype, balance name and
double data type. The BankAccount class also has two
operations, namely operation_1, and operation_2.
Operation_1 has a public stereotype, the returnBalance name,
and a double data type. Operation_2 has a public stereotype,
name updateBalance, data type double, and parameter
parameter_1. Parameter_1 contains a debitCard.

B. Calculation Method

The calculation method used is by adapting and
perfecting calculation parameters from the previous method
[11], [14], [19]. This paper takes a structural and semantic
approach. The structural approach is carried out from the
UML class diagram metadata structure. The semantic
approach is made from the similarity between words at each
end node of the UML class metadata using natural language
processing.

As previously explained, the similarities between 2 UML
class diagrams can be calculated based on the metadata they
have. The metadata has two nodes on the second level,
namely component (comSim) and relation (relSim). Equation
1 describes how to calculate similarity between two class
diagrams-, i.e. d1 and d2.

),(

),(),(

21

2121

ddrelSimw

ddcomSimwddclassSim

rel

com

×
+×= (1)

where wcom is the weight of the component's resemblance
and wrel is the weight of the similarity of the relation. Next,
how to calculate from comSim is to calculate the similarity of
class objects between diagrams. This calculation is shown in
Equation 2.

Fig. 1. Metadata of UML Class Diagram

2018 3rd International Conference on Information Technology, Information Systems and Electrical Engineering
(ICITISEE), Yogyakarta, Indonesia

216

||||

)),((
),(

21

|||,(|

1,
21

21

OO

oooSimMax
ddcomSim

OOMac

ji ji

+
=

 = (2)

where O1 and O2 are collections of object classes in the
diagrams d1 and d2. Then to calculate the semantic similarity
of two object classes (oSim (o1, o2)) using Equation 3.

),(

),(),(),(

21

212121

ooopSimw

ooaSimwoocSimwoooSim

op

ac

×
+×+×= (3)

where wc, wa, and wop are arbitrary weight assign to class
similarity (cSim), atribute similarity (aSim), and operation
similarity (opSim), respectively. The similarity of classes
measures the lexical similarity of the class names of two
class objects. The calculation process is done with cosine
similarity as shown in Equation 4.

||||

)),(sin(
),(

21

|)||,(|

1,
21

21

CPCP

cpcpeSimCoMax
oocSim

CPCPMax

ji ji

+
=

 = (4)

where CP1 and CP2 are lexical forms of class names between
two objects (o1, o2). Then, Equation 3 raises the similarity of
attributes between two object classes (aSim (o1, o2)). How to
calculate the similarity of attributes in Equation 5.

||||

)),((
),(

21

|)||,(|

1,
21

21

AA

aadaSimMax
ooaSim

AAMax

ji ji

+
=

 = (5)

where A1 and A2 are a collection of attributes in two object
classes. As previously known, attributes consist of
stereotypes, attribute names and data types. So we need
advanced calculations that contain the three things that are
attributes (daSim(a1,a2)). This is a need to do so that the
results obtained are more accurate. The calculation is in
Equation 6.

),(),(

),(),(

2121

2121

tytyWuPwnanaWuP

wststWuPwaadaSim

ty

nast

×+
×+×= (6)

where wst, wna, dan wty are arbitrary weight assign to
stereotype similarity, attribute’s name similarity, and
attribute’s data type similarity, respectively. The similarity
between two attributes can be calculated from the lexical of
each component in the attribute. Then, Equation 3 raises the
similarity of attributes between two operations (opSim (op1,
op2)). How to calculate the similarity of operations in
Equation 7.

||||

)),((
),(

21

|)||,(|

1,
21

21

OPOP

opopdopSimMax
ooopSim

OPOPMax

ji ji

+
=

 = (7)

where OP1 and OP2 are a collection of operations in two
object classes. As previously known, the operation consists
of stereotypes, the operation’s names, data types, and
parameter. So we need advanced calculations that contain the

four things that are operations (dopSim(op1,op2)). This is a
need to do so that the results obtained are more accurate. The
calculation is in Equation 8.

),(

),(),(

),(),(

21

2121

2121

opopparSimw

tyOtyOWuPwnaOnaOWuPw

stOstOWuPwopopdopSim

parO

tyOnaO

stO

×

+×+×
+×=

 (8)

where wstO, wnaO, wtyO and wparO are arbitrary weight assign to
stereotype similarity, operation’s name similarity,
operation’s data type similarity, and operation’s parameter
similarity, respectively. The similarity between the two
operations can be calculated from the lexical of each
component in the operation. But, the parameter can not be
calculated as simple as that. We need to use cosine similarity
to calculate as shown in Equation 9.

||||

)),(sin(

),(

21

|)||,(|

1,

21

21

PARPAR

parpareSimCoMax

opopparSim
PARPARMax

ji ji

+

=

 =
 (9)

where PAR1 and PAR2 are lexical forms of the parameter
between two operations (op1, op2). Then, Equation 1 raises
the relation similarity between two class diagrams (relSim
(d1, d2)). How to calculate the relation similarity in Equation
10.

),(),(

),(),(

2121

2121

ddrgSimwddrdSimw

ddraSimwddrelSim

rgrd

ra

×+×
+×= (10)

where wra, wrd, and wrg are arbitrary weight assign to
association relations similarity (raSim), dependency
similarity (rdSim), and generalization relation similarity
(rgSim), respectively. Then, Equation 10 raises the similarity
of association between two UML class diagram (raSim (d1,
d2)). How to calculate the similarity of attributes in Equation
11.

||||

),((
),d(

21

|)||,(|

1,
21

21

RARA

raradraSimMax
draSim

RARAMax

ji ji

+
=

 = (11)

where RA1 and RA2 are a collection of association relations
in two object classes. As previously known, association
consist of source class, relation’s name, lower level
multiplicity, upper level multiplicity,
aggregation/composition, and target class. So we need
advanced calculations that calculate relation similarity
(draSim(a1,a2)). This is need to do so that the results obtained
are more accurate. The calculation is in Equation 12.

),(

),(),(

),(),(

),(),(

216

215214

213212

21121

tgttgtWuPw

owowWuPwloloWuPw

upupWuPwnmnmWuPw

srcsrcWuPwraradraSim

ra

rara

rara

ra

×
+×+×

+×+×
+×=

 (12)

2018 3rd International Conference on Information Technology, Information Systems and Electrical Engineering
(ICITISEE), Yogyakarta, Indonesia

217

where wra1, wra2, wra3, wra4, wra5, and wra6 are arbitrary weight
assign to the similarity of source class, the similarity of
relation’s name, the similarity of lower level multiplicity, the
similarity of upper level multiplicity, the similarity of
aggregation/composition, and the similarity of target class,
respectively. Then, Equation 10 raises the similarity of
dependency relation’s similarity (rdSim (d1, d2)). How to
calculate the similarity as shown in Equation 13.

||||

),((
),d(

21

|)||,(|

1,
21

21

RDRD

rdrddrdSimMax
drdSim

RDRDMax

ji ji

+
=

 = (13)

where RD1 and RD2 are a collection of dependency relations
in two object classes. As previously known, dependency
consists of source class and target class. So we need
advanced calculations that calculate relation similarity
(drdSim(rd1,rd2)). This is a need to do so that the results
obtained are more accurate. The calculation is in Equation
14.

),(

),(),(

212

21121

tgttgtWuPw

srcsrcWuPwrdrddrdSim

rd

rd

×
+×= (14)

where wrd1 and wrd2 are arbitrary weight assign to the
similarity of source class and similarity of target class,
respectively. The similarity of dependency relation between
two class diagrams can be calculated from the lexical of each
component in the relation. Then, Equation 10 raises the
similarity of generalization relation’s similarity (rgSim (d1,
d2)). How to calculate the similarity as shown in Equation
15.

||||

),((
),d(

21

|)||,(|

1,
21

21

RGRG

rgrgdrgSimMax
drgSim

RGRGMax

ji ji

+
=

 = (15)

where RG1 and RG2 are a collection of generalization
relations in two object classes. As previously known,
generalization consists of source class and target class. So we
need advanced calculations that calculate relation similarity
(drgSim(rg1,rg2)). This is a need to do so that the results
obtained are more accurate. The calculation is in Equation
16.

),(

),(),(

212

21121

tgttgtWuPw

srcsrcWuPwrgrgdrgSim

rg

rg

×

+×=
 (16)

where wrg1 and wrg2 are arbitrary weight assign to the
similarity of source class and similarity of target class,
respectively. The similarity of generalization relation
between two class diagrams can be calculated from the
lexical of each component in the relation.

III. EMPIRICAL RESULT AND ANALYSIS

The main purpose of this paper is to show what
parameters are needed and how to calculate the similarity
between two UML class diagrams. For example, we show
the results of the calculation between the diagrams in Figure

2 (CD_1) and the diagram in Figure 3 (CD_2). Both are
UML class diagrams that explain bank transactions.
However, the content between classes is largely different.
The relationship between the two UML diagrams of this
class is also very different. From this example, we look at the
similarity values of both.

Fig. 3. UML Class Diagram Example 2

Table I shows the results of the calculation of similarities
in the UML class diagram’s component between CD_1 and
CD_2. Calculation using Equation 2. From Table I, we get
the highest similarity value in the similarity between o1_1
and o2_3. Then, the similarity between o1_2 and o2_2
becomes the next highest. Next, the similarity between o1_3
and o2_1 becomes the last value.

TABLE I. COMPONENT SIMILARITY BETWEEN CD_1 DAN CD_2

comSim o2_1 o2_2 o2_3

o1_1 0.458525359 0.437619128 0.557503702

o1_2 0.383783962 0.555750512 0.38828224

o1_3 0.315876795 0.306556741 0.372676284

Table II shows the results of calculating the similarity of
the association of UML class diagram between CD_1 and
CD_2. Calculation using Equation 11. From Table II, we get
the highest similarity value in the similarity between a1_1
and a2_4. Then, the similarity between a1_2 and a2_3
becomes the next highest. Then, the similarity between a1_3
and a2_2 becomes the next highest. Next, the similarity
between a1_4 and a2_1 becomes the last value.

TABLE II. ASSOCIATION SIMILARITY BETWEEN CD_1 DAN CD_2

raSim a2_1 a2_2 a2_3 a2_4

a1_1 0.18564790 0.28270436 0.31512530 0.38303717

a1_2 0.33270436 0.16064790 0.40803717 0.34012530

a1_3 0.21806438 0.47758478 0.28012834 0.41545365

a1_4 0.52758478 0.16806438 0.41545365 0.28012834

In the case of similarities between CD_1 and CD_2, the
calculation of the similarity of relations is only calculated on
the association relation. CD_1 does not have generalizations

2018 3rd International Conference on Information Technology, Information Systems and Electrical Engineering
(ICITISEE), Yogyakarta, Indonesia

218

or dependencies. CD_1 only has association relations. This
paper proposes a fair comparison of relations. We will not
compare different types of relations.

Having found the results of similar structures and
relations, we calculate the weight that has been determined in
accordance with Equation 1. The weight of wstruc and wrel are
set experimentally to 0.6 and 0.4. Equation 1 calculation
results give a value of 0.393600838. This result is similar to
a direct observation which shows both UML class diagrams
are similar to about 30%.

Based on the results, this study shows all parameters that
might affect the similarity of UML class diagrams. Complete
appearance of all metadata can be done. Then a fair
comparison of the relations in the UML class diagram can be
done. These two things can be used in improvement from
previous research [11], [14]. Then structural and semantic
similarity measurement are good parameters in calculating
UML diagrams [19].

IV. CONCLUSION

This paper introduces the method to measure similarity
between two models designed as class diagrams. The
algorithm uses word similarity methods (WuP and
Levensthein Distance) to measure the word similarity
between elements of different class, and Greedy Algorithm
to find the local optima of similarity values between the two
classes and diagrams. The proposed method consists of two
parts, namely the semantic similarity of the components and
the structural similarity, which considers various class
relations, of two models of class diagram The initial
investigation of this paper show all parameters could
determine the similarity of the two models. Every detail
information of UML class diagram can determine UML class
diagram similarity. And comparing two relationships by fair
comparison could be a good way to enhance the
measurement method.

Further research should be carried out to determine using
larger dataset. This research should determine a set of
weights that can produce the highest measurement accuracy.
Thus, it is necessary to look for alternative algorithm that is
more accurate than the greedy approach to find the best pairs
of component similarity.

ACKNOWLEDGMENT

The result is in cooperation between Institut Teknologi
Sepuluh Nopember and STIKOM Bali.

REFERENCES

[1] M. J. Chonoles, “What is UML?,” in OCUP Certification Guide:
UML 2.5 Foundational Exam, 2018, pp. 17–41.

[2] D. O. Siahaan, Rekayasa Perangkat Lunak. Surabaya: Penerbit Andi,
2012.

[3] D. O. Siahaan and F. Irhamni, “Advanced methodology for
requirements engineering technique solution (AMRETS),” Int. J.
Adv. Comput. Technol., vol. 4, no. 5, pp. 75–80, 2012.

[4] M. Chechik, S. Nejati, and M. Sabetzadeh, “A relationship-based
approach to model integration,” Innov. Syst. Softw. Eng., vol. 8, no.
1, pp. 3–18, 2012.

[5] W. N. Robinson and H. G. Woo, “Finding reusable UML sequence
diagrams automatically,” IEEE Softw., vol. 21, no. 5, pp. 60–67,
2004.

[6] W. B. Frakes and K. Kang, “Software reuse research: status and
future,” IEEE Trans. Softw. Eng., vol. 31, no. 7, pp. 529–536, 2005.

[7] I. Sommerville, Software Engineering. 2010.
[8] D. S. Kolovos, D. Di Ruscio, A. Pierantonio, and R. F. Paige,

“Different Models for Model Matching: An analysis of approaches
to support model differencing,” 2nd Work. Comp. Versioning Softw.
Model. (CVSM’09), ACM/IEEE Int. Conf. Softw. Eng., pp. 1–6,
2009.

[9] A. Adamu and W. M. N. W. Zainon, “Multiview Similarity
Assessment Technique of UML Diagrams,” Procedia Comput. Sci.,
vol. 124, pp. 311–318, 2017.

[10] T. C. Lethbridge and R. Laganiere, “Object-Oriented Software
Engineering : Practical Software Development Using Uml and Java,”
McGraw-Hill Publ. Co., p. 561, 2004.

[11] M. A.-R. M. Al-Khiaty and M. Ahmed, “Similarity Assessment of
UML Class Diagrams using a Greedy Algorithm,” Softw. Eng. Serv.
…, pp. 19–23, 2014.

[12] M. Al-Khiaty and M. Ahmed, “Similarity assessment of UML class
diagrams using simulated annealing,” Softw. Eng. Serv. …, 2014.

[13] A. Sellami, H. Hakim, A. Abran, and H. Ben-Abdallah, “A
measurement method for sizing the structure of UML sequence
diagrams,” Inf. Softw. Technol., vol. 59, pp. 222–232, 2015.

[14] M. A. R. Al-Khiaty and M. Ahmed, “Matching UML class diagrams
using a Hybridized Greedy-Genetic algorithm,” Proc. 12th Int. Sci.
Tech. Conf. Comput. Sci. Inf. Technol. CSIT 2017, vol. 1, pp. 161–
166, 2017.

[15] X. Yue, G. Di, Y. Yu, W. Wang, and H. Shi, “Analysis of the
combination of natural language processing and search engine
technology,” Procedia Eng., vol. 29, pp. 1636–1639, 2012.

[16] H. Wang, W. Zhang, Q. Zeng, Z. Li, K. Feng, and L. Liu,
“Extracting important information from Chinese Operation Notes
with natural language processing methods,” J. Biomed. Inform., vol.
48, pp. 130–136, 2014.

[17] M. Sevenster, J. Bozeman, A. Cowhy, and W. Trost, “A natural
language processing pipeline for pairing measurements uniquely
across free-text CT reports,” J. Biomed. Inform., vol. 53, pp. 36–48,
2015.

[18] V. Anikushina, V. Taratukhin, and C. von Stutterheim, “Natural
Language Oral Communication in Humans Under Stress. Linguistic
Cognitive Coping Strategies for Enrichment of Artificial
Intelligence,” Procedia Comput. Sci., vol. 123, pp. 24–28, 2018.

[19] D. O. Siahaan, Y. Desnelita, Gustientiedina, and Sunarti, “Structural
and Semantic Similarity Measurement of UML Sequence
Diagrams,” in International Conference on Information &
Communication Technology and System (ICTS), 2017, pp. 227–234.

2018 3rd International Conference on Information Technology, Information Systems and Electrical Engineering
(ICITISEE), Yogyakarta, Indonesia

219

